Introduction: The introduction of biological disease-modifying antirheumatic drugs (bDMARDs) has improved the treatment of inflammatory rheumatic diseases dramatically. However, bDMARD treatment failure occurs in 30%-40% of patients due to lack of effect or adverse events, and the tools to predict treatment outcomes in individual patients are currently limited. The objective of the present study is to identify diagnostic, prognostic and predictive biomarkers, which can be used to (1) diagnose inflammatory rheumatic diseases early in the disease course with high sensitivity and specificity, (2) improve prognostication or (3) predict and monitor treatment effectiveness and tolerability for the individual patient.

Methods And Analysis: The present study is an observational and translational open cohort study with prospective collection of clinical data and biological materials (primarily blood) in patients with inflammatory rheumatic diseases treated in routine care. Patients contribute with one cross-sectional blood sample and/or are enrolled for longitudinal follow-up on initiation of a new DMARD (blood sampling after 0, 3, 6, 12, 24, 36, 48, 60 months of treatment). Other biological materials will be collected when accessible and relevant. Demographics, disease characteristics, comorbidities and lifestyle factors are registered at inclusion; DMARD treatment and outcomes are collected repeatedly during follow-up. Currently (July 2017), >5000 samples from approximately 3000 patients have been collected. Data will be analysed using appropriate statistical analyses.

Ethics And Dissemination: The protocol is approved by the Danish Ethics Committee and the Danish Data Protection Agency. Participants give written and oral informed consent. Biomarkers will be evaluated and published according to the Reporting Recommendations for Tumour Marker (REMARK) prognostic studies, Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) and the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines. Results will be published in peer-reviewed scientific journals and presented at international conferences.

Trial Registration Number: NCT03214263.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5829933PMC
http://dx.doi.org/10.1136/bmjopen-2017-019325DOI Listing

Publication Analysis

Top Keywords

inflammatory rheumatic
16
rheumatic diseases
12
patients inflammatory
8
open cohort
8
cohort study
8
treatment outcomes
8
biological materials
8
treatment
7
patients
6
identification biomarkers
4

Similar Publications

A new twist on superantigen-activated autoimmune disease.

J Clin Invest

January 2025

Division of Rheumatology, Center of Excellence for Intestinal and Immunology Research, University of Alberta, Edmonton, Alberta, Canada.

Superantigen-induced (Sag-induced) autoimmunity has been proposed as a mechanism for many human disorders, without a clear understanding of the potential triggers. In this issue of the JCI, McCarthy and colleagues used the SKG mouse model of rheumatoid arthritis to characterize the role of Sag activity in inflammatory arthritis by profiling arthritogenic naive CD4+ T cells. Within the diseased joints, they found a marked enrichment of T cell receptor-variable β (TCR-Vβ) subsets that were reactive to the endogenously encoded mouse mammary tumor virus (MMTV) Sag.

View Article and Find Full Text PDF

A ROS-responsive hydrogel encapsulated with matrix metalloproteinase-13 siRNA nanocarriers to attenuate osteoarthritis progression.

J Nanobiotechnology

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.

RNA interference (RNAi) and oxidative stress inhibition therapeutic strategies have been extensively utilized in the treatment of osteoarthritis (OA), the most prevalent degenerative joint disease. However, the synergistic effects of these approaches on attenuating OA progression remain largely unexplored. In this study, matrix metalloproteinase-13 siRNA (siMMP-13) was incorporated onto polyethylenimine (PEI)-polyethylene glycol (PEG) modified FeO nanoparticles, forming a nucleic acid nanocarrier termed si-Fe NPs.

View Article and Find Full Text PDF

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

Targeting TRPC channels for control of arthritis-induced bone erosion.

Sci Adv

January 2025

Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.

Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a degenerative autoimmune disease, often managed through symptomatic treatment. The co-occurrence of the reported extra-articular comorbidities such as inflammatory bowel disease (IBD), and dementia may complicate the pathology of the disease as well as the treatment strategies. Therefore, in our study, we aim to elucidate the key genes, and regulatory elements implicated in the progression and association of these diseases, thereby highlighting the linked potential therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!