A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Current Methods and Advances in Simulation of Hemorrhage after Trauma. | LitMetric

Current Methods and Advances in Simulation of Hemorrhage after Trauma.

Am Surg

Department of Surgery, Center for Advanced Surgical Technologies, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.

Published: October 2017

As animal models fall out of favor, there is demand for simulators to train medical personnel in the management of trauma and hemorrhage. Realism is essential to the development of simulators for training in the management of trauma and hemorrhage, but is difficult to achieve because it is difficult to create models that accurately represent bleeding organs. We present a simulation platform that uses real-time mathematical modeling of hemodynamics after hemorrhage and trauma and visually represents the injury described by the model. Using patient-specific imaging, 3D-mesh representations of the liver were created and merged with an anatomically accurate vascular tree. By using anatomically accurate representations of the vasculature, we were able to model the cardiovascular response to hemorrhage in a specific artery. The incorporation of autonomic tone allowed for the calculation of bleeding rate and aortic pressures. The 3D-mesh representation of the liver allowed us to simulate blood flow from the liver after trauma. For the first time, we have successfully incorporated tissue modeling and fluid dynamics with a model of the cardiovascular system to create a simulator. These simulations may aid in the creation of realistic virtual environments for training.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hemorrhage trauma
8
management trauma
8
trauma hemorrhage
8
anatomically accurate
8
model cardiovascular
8
hemorrhage
5
trauma
5
current methods
4
methods advances
4
advances simulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!