Background: Endometriosis is a known cause of infertility. Differences in immune tolerance caused by regulatory T cells (Tregs) and transforming growth factor-β (TGF-β) are thought to be involved in the pathology of endometriosis. Evidence has indicated that Tregs can be separated into three functionally and phenotypically distinct subpopulations and that activated TGF-β is released from latency-associated peptide (LAP) on the surfaces of specific cells. The aim of this study was to examine differences in Treg subpopulations and LAP in the peripheral blood (PB) and peritoneal fluid (PF) of patients with and without endometriosis.

Methods: PB and PF were collected from 28 women with laparoscopically and histopathologically diagnosed endometriosis and 20 disease-free women who were subjected to laparoscopic surgery. Three subpopulations of CD4 T lymphocytes (CD45RAFoxP3 resting Tregs, CD45RAFoxP3 effector Tregs, and CD45RAFoxP3 non-Tregs) and CD11b mononuclear cells expressing LAP were analyzed by flow cytometry using specific monoclonal antibodies.

Results: Proportions of suppressive Tregs (resting and effector Tregs) were significantly higher in the PF samples of patients with endometriosis than in those of control women (P = 0.02 and P < 0.01, respectively) but did not differ between the PB samples of patients and controls. The percentage of CD11bLAP macrophages was significantly lower in PF samples of patients with endometriosis than in those of controls (P < 0.01) but was not altered in the PB samples.

Conclusion: Proportions of suppressive Tregs and LAP macrophages are altered locally in the PF of endometriosis patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796574PMC
http://dx.doi.org/10.1186/s12958-018-0325-2DOI Listing

Publication Analysis

Top Keywords

regulatory cells
8
transforming growth
8
peritoneal fluid
8
fluid patients
8
patients endometriosis
8
tregs cd45rafoxp3
8
effector tregs
8
tregs
6
endometriosis
5
suppressive regulatory
4

Similar Publications

Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.

View Article and Find Full Text PDF

The sodium phosphate cotransporter-2A (NPT2A) mediates basal and parathyroid hormone (PTH)- and fibroblast growth factor-23 (FGF23)-regulated phosphate transport in proximal tubule cells of the kidney. Both basal and hormone-sensitive transport require sodium hydrogen exchanger regulatory factor-1 (NHERF1), a scaffold protein with tandem PDZ domains, PDZ1 and PDZ2. NPT2A binds to PDZ1.

View Article and Find Full Text PDF

Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.

View Article and Find Full Text PDF

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

Immune Cells and Intracerebral Hemorrhage: A Causal Investigation Through Mendelian Randomization.

Brain Behav

January 2025

Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.

Background: The involvement of immune cells in the pathophysiology of intracerebral hemorrhage (ICH) is becoming increasingly recognized, yet their specific causal contributions remain uncertain. The objective of this research is to uncover the potential causal interactions between diverse immune cells and ICH using Mendelian randomization (MR) analysis.

Methods: Genetic variants associated with 731 immune cell traits were sourced from a comprehensive genome-wide association study (GWAS) involving 3757 participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!