Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5007854 | DOI Listing |
Sci Rep
January 2025
Pesticide Formulation Research Department, Central Agriculture Pesticides Laboratory, Agricultural Research Center, Alexandria, Egypt.
Formulation and adjuvant technologies can facilitate the use of insecticides that have higher biological efficiency application features. Safety, physicochemical properties by increasing consumer demand for safe food and enhancing operator safety. The aim of this current work was to develop a green efficient, and stable pesticide formulation.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Center for Complex Systems and Brain Sciences, Universidad Nacional de San Martin Escuela de Ciencia Y Tecnologia, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, ARGENTINA.
Objective Magnetic resonance imaging (MRI), functional MRI (fMRI) and other neuroimaging techniques are routinely used in medical diagnosis, cognitive neuroscience or recently in brain decoding. They produce three- or four-dimensional scans reflecting the geometry of brain tissue or activity, which is highly correlated temporally and spatially. While there exist numerous theoretically guided methods for analyzing correlations in one-dimensional data, they often cannot be readily generalized to the multidimensional geometrically embedded setting.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Physics, College of Science, University of Bisha, P.O. Box 344, Bisha, 61922, Saudi Arabia.
The ability of nanofluids to improve heat transmission in thermal systems is well established. This work investigates the three-dimensional theoretical behavior of Darcy-Forchheimer nanofluids in tilted magnetohydrodynamics. In this study, the Soret effect, micro-motile organisms, thermophoresis, and heat radiation are also considered.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
Intelligent decisions in response to external informative input can allow organisms to achieve their biological goals while spending very little of their own resources. In this paper, we develop and study a minimal model for a navigational task, performed by an otherwise completely motorless particle that possesses the ability of hitchhiking in a bath of active Brownian particles (ABPs). Hitchhiking refers to identifying and attaching to suitable surrounding bath particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!