A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5012820DOI Listing

Publication Analysis

Top Keywords

faraday rotation
16
rotation measurement
8
polarimeter-interferometer system
8
stray light
8
reflections optical
8
faraday
5
effects stray
4
stray lights
4
lights faraday
4
rotation
4

Similar Publications

We study experimentally the nonlinear mode coupling between circular polarizations in a vertical-cavity surface-emitting laser (VCSEL) device developed for spin injection. The specific experimental arrangement that includes a Faraday rotator enables laser oscillation on left-circular or right-circular polarization, by adjusting the cavity losses. We show the simultaneous oscillation of both polarizations never occurs, proving that the Lamb coupling constant is very close to 1 in this VCSEL device, a situation that is ideal for spintronic applications.

View Article and Find Full Text PDF

To design an innovative magneto-optical material aimed at a large Verdet constant coincides with the development trend of state-of-the-art modern optical devices. In this work, a magneto-optical transparent PrZrO ceramic with pyrochlore structure was successfully fabricated by vacuum sintering plus hydrogen reduction for the first time to our knowledge. The two- and three-dimensional images observed on the laser scanning confocal microscopy reveal that the grain-boundary dent depth of the polished PrZrO ceramic is only ∼1.

View Article and Find Full Text PDF
Article Synopsis
  • Modulating signals in spectroscopy helps reduce noise, but using optical modulators with broadband coherent light sources like optical frequency combs can complicate experiments.
  • This study introduces a new technique called broadband Faraday modulation rotation spectroscopy (FAMOS) that makes it easier to apply modulation by lowering the modulation frequency from tens of MHz to kHz.
  • The new method not only simplifies the setup but also enhances the signal-to-noise ratio by effectively managing low-frequency noise, leading to more accurate measurements in practical applications.
View Article and Find Full Text PDF

Faraday isolators are usually limited to Faraday materials with strong Verdet constants. We present a method to reach the 45° polarization rotation angle needed for optical isolators with materials exhibiting a weak Faraday effect. The Faraday effect is enhanced by passing the incident radiation multiple times through the Faraday medium while the rotation angle accumulates after each pass.

View Article and Find Full Text PDF

M-type barium hexaferrites (BaLaFeO) were prepared by the liquid phase epitaxial (LPE) method, in which Ba was substituted by La. The Faraday rotation effect of materials in the frequency range of 0.5-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!