Fibrillation is an erratic electrical state of the heart, of rapid twitching rather than organized contractions. Ventricular fibrillation is fatal if not treated promptly. The standard treatment, defibrillation, is a strong electrical shock to reinitialize the electrical dynamics and allow a normal heart beat. Both the normal and the fibrillatory electrical dynamics of the heart are organized into moving wave fronts of changing electrical signals, especially in the transmembrane voltage, which is the potential difference between the cardiac cellular interior and the intracellular region of the heart. In a normal heart beat, the wave front motion is from bottom to top and is accompanied by the release of Ca ions to induce contractions and pump the blood. In a fibrillatory state, these wave fronts are organized into rotating scroll waves, with a centerline known as a filament. Treatment requires altering the electrical state of the heart through an externally applied electrical shock, in a manner that precludes the existence of the filaments and scroll waves. Detailed mechanisms for the success of this treatment are partially understood, and involve local shock-induced changes in the transmembrane potential, known as virtual electrode alterations. These transmembrane alterations are located at boundaries of the cardiac tissue, including blood vessels and the heart chamber wall, where discontinuities in electrical conductivity occur. The primary focus of this paper is the defibrillation shock and the subsequent electrical phenomena it induces. Six partially overlapping causal factors for defibrillation success are identified from the literature. We present evidence in favor of five of these and against one of them. A major conclusion is that a dynamically growing wave front starting at the heart surface appears to play a primary role during defibrillation by critically reducing the volume available to sustain the dynamic motion of scroll waves; in contrast, virtual electrodes occurring at the boundaries of small, isolated blood vessels only cause minor effects. As a consequence, we suggest that the size of the heart (specifically, the surface to volume ratio) is an important defibrillation variable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5019367 | DOI Listing |
Chaos
November 2024
Department of Physics, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon.
Sci Rep
November 2024
Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, 71491, Tabuk, Saudi Arabia.
This work investigates the Kraenkel-Manna-Merle (KMM) system, which models the nonlinear propagation of short waves in saturated ferromagnetic materials subjected to an external magnetic field, despite the absence of electrical conductivity. The study aims to explore and derive new solitary wave solutions for this system using two distinct methodological approaches. In the first approach, the KMM system is transformed into a system of nonlinear ordinary differential equations (ODEs) via Lie group transformation.
View Article and Find Full Text PDFAPL Mach Learn
September 2024
Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, USA.
Electrical waves in the heart form rotating spiral or scroll waves during life-threatening arrhythmias, such as atrial or ventricular fibrillation. The wave dynamics are typically modeled using coupled partial differential equations, which describe reaction-diffusion dynamics in excitable media. More recently, data-driven generative modeling has emerged as an alternative to generate spatio-temporal patterns in physical and biological systems.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2024
Centro de Investigación e Innovación en Bioingeniería, Universitat Politécnica de València, Camino de Vera, s/n, 46022,Valencia, Spain.
Electrical waves in the heart form rotating spiral or scroll waves during life-threatening arrhythmias such as atrial or ventricular fibrillation. The wave dynamics are typically modeled using coupled partial differential equations, which describe reaction-diffusion dynamics in excitable media. More recently, data-driven generative modeling has emerged as an alternative to generate spatio-temporal patterns in physical and biological systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!