Are parents of children with Cockayne syndrome manifesting features of the disorder?: Case reports.

Medicine (Baltimore)

Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital Orthopaedic Hospital of Speising, Paediatric Department, Vienna, Austria Department of Radiation and Cytology, Institute of Cytology RAS Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Saint Petersburg, Russia Department of Paediatric Orthopaedics, Hopital d'Enfants, Tunis Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria.

Published: December 2017

Rationale: Postnatal growth failure and progressive neurologic dysfunction and increasing multiorgan involvement are the main clinical features of Cockayne syndrome (CS). CS is a rare autosomal recessive disorder of the group of DNA repair diseases. Usually, genetic carriers, such as parents of patients, are not at risk for developing the disease.

Patient Concerns: A series of 14 family subjects (6 children with age range from 6 months to 4 years with CS) and 9 parents (aged from 23 to 34 years) from consanguineous families is reported.

Diagnoses: Ultraviolet irradiation studies were performed on these children and were indicative of CS.

Interventions: Cells of skin fibroblast from these children with the disease showed a symmetrical accumulation of chromosomal aberrations and the nuclear lamina aberrations. Our results showed a significant and simultaneous increase of percent of blebbs and invaginations of the nuclear lamina in all cases CS. The pronounced changes in 12.6 times at atypical form (girl); in 8.5 times at severe form (boy) and in 5.6 times at light form (boy). Percentage of metaphases with chromosomal aberration is significantly higher in CS cells: in 4 times at atypical form, in 3 times at hard form, and in 2 times at light form. The parents of these families (consanguineous families) were intellectually variable between normal/borderline intelligence, though most manifested a constellation of skeletal and extraskeletal abnormalities and notably, the characteristic cachectic facial appearance. The parents were considered as manifesting the mild type of CS, because they showed no abnormalities of DNA repair.

Outcomes: Clinical manifestations in heterozygote carriers of an autosomal recessive disorders is a rare phenomenon as carriers are usually healthy.

Lessons: The interesting finding of the families studied is that there appeared to be a multitude of carriers manifesting with normal to borderline intelligence but with a wide spectrum of skeletal and extraskeletal abnormalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815703PMC
http://dx.doi.org/10.1097/MD.0000000000008970DOI Listing

Publication Analysis

Top Keywords

cockayne syndrome
8
autosomal recessive
8
consanguineous families
8
nuclear lamina
8
times atypical
8
atypical form
8
form boy
8
times light
8
light form
8
form times
8

Similar Publications

Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence.

View Article and Find Full Text PDF

Syndromic Retinitis Pigmentosa.

Prog Retin Eye Res

December 2024

Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives.

View Article and Find Full Text PDF

The Hashimoto Research Group for Comprehensive Research of Gene Mutation-related Rare and Intractable Diseases of the Skin is a contributor to the Project for Research on Intractable Diseases of the Ministry of Health, Labor, and Welfare (MHLW) of Japan. Our research group performs clinical research on 23 rare intractable genetic skin diseases that are classified into eight disease groups. Among the 23 diseases, 17 are mainly studied by our research group, and 6 diseases are studied in collaboration with other research groups.

View Article and Find Full Text PDF

Transcription-coupled repair - mechanisms of action, regulation, and associated human disorders.

FEBS Lett

December 2024

Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

The transcription-coupled repair (TCR) pathway resolves transcription-blocking DNA lesions to maintain cellular function and prevent transcriptional arrest. Stalled RNA polymerase II (RNAPII) triggers repair mechanisms, including RNAPII ubiquitination, which recruit UVSSA and TFIIH. Defects in TCR-associated genes cause disorders like Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and recently defined AMeDS.

View Article and Find Full Text PDF

Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!