The increased susceptibility to infections of neonates is caused by an immaturity of the immune system as a result of both qualitative and quantitative differences between neonatal and adult immune cells. With respect to B cells, neonatal antibody responses are known to be decreased. Accountable for this is an altered composition of the neonatal B cell compartment towards more immature B cells. However, it remains unclear whether the functionality of individual neonatal B cell subsets is altered as well. In the current study we therefore compared phenotypical and functional characteristics of corresponding neonatal and adult B cell subpopulations. No phenotypic differences could be identified with the exception of higher IgM expression in neonatal B cells. Functional analysis revealed differences in proliferation, survival, and B cell receptor signaling. Most importantly, neonatal B cells showed severely impaired class-switch recombination (CSR) to IgG and IgA. This was associated with increased expression of miR-181b in neonatal B cells. Deficiency of miR-181b resulted in increased CSR. With this, our results highlight intrinsic differences that contribute to weaker B cell antibody responses in newborns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794184PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192230PLOS

Publication Analysis

Top Keywords

neonatal cells
16
neonatal
9
associated increased
8
increased expression
8
expression mir-181b
8
mir-181b increased
8
neonatal adult
8
antibody responses
8
neonatal cell
8
cells
7

Similar Publications

Alloimmunization during pregnancy occurs when a mother produces antibodies against fetal antigens, leading to complications like hemolytic disease of the fetus and newborn (HDFN) and fetal and neonatal alloimmune thrombocytopenia (FNAIT). HDFN involves destruction of fetal red blood cells, potentially causing severe anemia, hydrops fetalis, and fetal death. FNAIT affects fetal platelets and possibly endothelial cells, resulting in risk of intracranial hemorrhage and brain damage.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Background: Alzheimer's disease (AD) is a progressive and multifactorial neurodegenerative disease that still has no cure. Different pathological processes contribute to the disease's development, such as the presence of amyloid beta (Aβ) plaques, neurofibrillary tangles (NFTs), glutamatergic excitotoxicity, oxidative stress, and neuroinflammation. Chalcones are polyphenolic compounds of natural origin with a wide range of biological activities, and emerging studies have reported neurotrophic activity, anti-inflammatory and antioxidant effects, and the inhibition of Aβ aggregation.

View Article and Find Full Text PDF

Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.

Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.

View Article and Find Full Text PDF

COA5 has an essential role in the early stage of mitochondrial complex IV assembly.

Life Sci Alliance

March 2025

https://ror.org/01kj2bm70 Mitochondrial Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK

Pathogenic variants in cytochrome oxidase assembly factor 5 (COA5), a proposed complex IV (CIV) assembly factor, have been shown to cause clinical mitochondrial disease with two siblings affected by neonatal hypertrophic cardiomyopathy manifesting a rare, homozygous missense variant (NM_001008215.3: c.157G>C, p.

View Article and Find Full Text PDF

The ATP-binding cassette transporter subfamily C member 8 (ABCC8) regulates insulin secretion from β-cells. Loss- and gain-of-function variants of have been implicated in neonatal hyperinsulinemic hypoglycemia and young-onset diabetes, respectively. Although some patients with variants have been reported to exhibit both neonatal hypoglycemia and young-onset diabetes, the molecular and clinical characteristics of this atypical phenotype remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!