A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk.

Sensors (Basel)

Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, Bldg. 303 BARC-East, Beltsville, MD 20705, USA.

Published: February 2018

Therapeutic and subtherapeutic use of veterinary drugs has increased the risk of residue contamination in animal food products. Antibiotics such as tetracycline are used for mastitis treatment of lactating cows. Milk expressed from treated cows before the withdrawal period has elapsed may contain tetracycline residue. This study developed a simple surface-enhanced Raman spectroscopic (SERS) method for on-site screening of tetracycline residue in milk and water. Six batches of silver colloid nanoparticles were prepared for surface enhancement measurement. Milk-tetracycline and water-tetracycline solutions were prepared at seven concentration levels (1000, 500, 100, 10, 1, 0.1, and 0.01 ppm) and spiked with silver colloid nanoparticles. A 785 nm Raman spectroscopic system was used for spectral measurement. Tetracycline vibrational modes were observed at 1285, 1317 and 1632 cm in water-tetracycline solutions and 1322 and 1621 cm (shifted from 1317 and 1632 cm, respectively) in milk-tetracycline solutions. Tetracycline residue concentration as low as 0.01 ppm was detected in both the solutions. The peak intensities at 1285 and 1322 cm were used to estimate the tetracycline concentrations in water and milk with correlation coefficients of 0.92 for water and 0.88 for milk. Results indicate that this SERS method is a potential tool that can be used on-site at field production for qualitative and quantitative detection of tetracycline residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856142PMC
http://dx.doi.org/10.3390/s18020424DOI Listing

Publication Analysis

Top Keywords

tetracycline residue
16
raman spectroscopic
12
simple surface-enhanced
8
surface-enhanced raman
8
method on-site
8
on-site screening
8
tetracycline
8
screening tetracycline
8
residue milk
8
sers method
8

Similar Publications

Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.

View Article and Find Full Text PDF

The extensive use of tetracyclines in livestock poses health risks due to their residues in animal-derived food; therefore, developing simple detection methods to replace complex traditional approaches is of paramount importance. Here, we developed a dual-ligand zinc-based metal-organic framework material, Zn-BTC-BDC-NH (denoted as ZTD), for the detection of tetracyclines. The intrinsic blue fluorescence of ZTD was quenched upon the introduction of tetracyclines due to electron transfer from -NH of ZTD to -CO- and -OH groups of tetracycline molecules; meanwhile, the new green fluorescence emission was generated through π-π stacking between aromatic rings and the formation of complexes between Zn and C-O/C═O groups.

View Article and Find Full Text PDF

Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway.

J Environ Manage

January 2025

Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:

Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.

View Article and Find Full Text PDF

This review investigates the levels of antibiotic residues in animal products, types of antibiotics, and their possible impact on human health in Africa. The literature search involved the use of a systematic survey using data that were published from Africa from 2015 to 2024. The search terms used the Boolean operators with keywords such as antibiotics, antibiotic residues, antibiotics in animal products in Africa, and impact on human health.

View Article and Find Full Text PDF

Novel tetracycline-degrading enzymes from the gut microbiota of black soldier fly: Discovery, performance, degradation pathways, mechanisms, and application potential.

J Hazard Mater

January 2025

Key Laboratory of Enzyme Engineering of Agricultural Microbiology (Ministry of Agriculture), School of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, 450046, China.

The antibiotic tetracycline (TC) is an emerging pollutant frequently detected in various environments. Although enzymatic remediation is a promising strategy for mitigating TC contamination, the availability of effective TC-degrading enzymes remains limited, and their mechanisms and applications are not fully understood. This study developed a comprehensive TC-degrading enzyme library from the gut microbiome of the highly TC-resistant saprophagous insect, black soldier fly larvae (BSFL), using an integrated metagenomic and comparative metatranscriptomic approach, identifying 105 potential novel TC-degradation genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!