This paper describes the design, simulation, and measurement of a tuneable 9.365-GHz aperiodic Bragg resonator. The resonator utilizes an aperiodic arrangement of non ( /4) low-loss alumina plates ( , loss tangent of to ) mounted in a cylindrical metal waveguide. Tuning is achieved by varying the length of the center section of the cavity. A multi-element bellows/probe assembly is presented. A tuning range of 130 MHz (1.39%) is demonstrated. The insertion loss varies from -2.84 to -12.03 dB while the unloaded Q varies from 43 788 to 122 550 over this tuning range. At 10 of the 13 measurement points, the unloaded Q exceeds 1 00 000, and the insertion loss is above -7 dB. Two modeling techniques are discussed; these include a simple ABCD circuit model for rapid simulation and optimization and a 2.5-D field solver, which is used to plot the field distribution inside the cavity.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2017.2782567DOI Listing

Publication Analysis

Top Keywords

bragg resonator
8
tuning range
8
insertion loss
8
high-q tuneable
4
tuneable 10-ghz
4
10-ghz bragg
4
resonator oscillator
4
oscillator applications
4
applications paper
4
paper describes
4

Similar Publications

Fiber Bragg grating (FBG) accelerometers are extensively utilized across various industries. For a high-performance FBG accelerometer interrogator, achieving low cost, wide range, multi-channel capability, high precision, and high-speed demodulation is critical. This paper proposes a chip-level wavelength demodulation method for FBG accelerometers utilizing a cascaded micro-ring resonator (MRR) array.

View Article and Find Full Text PDF

The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array.

View Article and Find Full Text PDF

Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array.

Light Sci Appl

January 2025

State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.

Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.

View Article and Find Full Text PDF

Chiral flat-band optical cavity with atomically thin mirrors.

Sci Adv

December 2024

Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.

A fundamental requirement for photonic technologies is the ability to control the confinement and propagation of light. Widely used platforms include two-dimensional (2D) optical microcavities in which electromagnetic waves are confined in either metallic or distributed Bragg reflectors. Recently, transition metal dichalcogenides hosting tightly bound excitons with high optical quality have emerged as promising atomically thin mirrors.

View Article and Find Full Text PDF

Phase-Change-Material-Based True Time-Delay System.

Sensors (Basel)

November 2024

Photonics Research Group, Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy.

This study explores the achievement of a tunable true time-delay (TTD) system for a microwave phased-array antenna (MPAA) by incorporating the reversible phase-transition property of phase-change material (PCM) with Bragg gratings (BGs) and a cascade of three phase-shifted Bragg grating resonators (CPSBGRs). The goal was to design a low-power-consuming, non-volatile highly tunable compact TTD system for beam steering. A programmable on/off reflector was designed by changing a PCM-incorporated BG/CPSBGR from one phase to another.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!