DNA encodes the genetic information; recently, it has also become a key player in material science. Given the specific Watson-Crick base-pairing interactions between only four types of nucleotides, well-designed DNA self-assembly can be programmable and predictable. Stem-loops, sticky ends, Holliday junctions, DNA tiles, and lattices are typical motifs for forming DNA-based structures. The oligonucleotides experience thermal annealing in a near-neutral buffer containing a divalent cation (usually Mg ) to produce a variety of DNA nanostructures. These structures not only show beautiful landscape, but can also be endowed with multifaceted functionalities. This Review begins with the fundamental characterization and evolutionary trajectory of DNA-based artificial structures, but concentrates on their biomedical applications. The coverage spans from controlled drug delivery to high therapeutic profile and accurate diagnosis. A variety of DNA-based materials, including aptamers, hydrogels, origamis, and tetrahedrons, are widely utilized in different biomedical fields. In addition, to achieve better performance and functionality, material hybridization is widely witnessed, and DNA nanostructure modification is also discussed. Although there are impressive advances and high expectations, the development of DNA-based structures/technologies is still hindered by several commonly recognized challenges, such as nuclease instability, lack of pharmacokinetics data, and relatively high synthesis cost.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201703658DOI Listing

Publication Analysis

Top Keywords

dna-based materials
8
biomedical applications
8
dna-based
5
dna
5
programmable multifunctional
4
multifunctional dna-based
4
materials biomedical
4
applications dna
4
dna encodes
4
encodes genetic
4

Similar Publications

The development of universal electrochemical sensing platforms with high sensitivity and specificity is of great significance for advancing practical disease diagnostic methods and devices. Exploring the structural properties of electrode materials and their interaction with biomolecules is essential to developing novel and distinctive analytical approaches. Here, we innovatively investigated the effect of DNA length and configuration on DNA molecule transfer into the nanostructure of a nanoporous gold (NPG) electrode.

View Article and Find Full Text PDF

To investigate the clinicopathological characteristics, immunophenotypes, diagnostic criteria and differential diagnosis of atrophic kidney-like lesion (AKLL). Three cases of AKLL were collected from April 2021 to October 2023 at the Xiangya Hospital of Central South University, Changsha, Zhejiang Provincial People's Hospital, Hangzhou and Ningbo Clinical Pathology Diagnosis Center, Ningbo, China. The clinical, morphological, and immunohistochemical characteristics were analyzed.

View Article and Find Full Text PDF

Epithelial cancers are typically heterogeneous with primary prostate cancer being a typical example of histological and genomic variation. Prior studies of primary prostate cancer tumour genetics revealed extensive inter and intra-patient genomic tumour heterogeneity. Recent advances in machine learning have enabled the inference of ground-truth genomic single-nucleotide and copy number variant status from transcript data.

View Article and Find Full Text PDF

Synthetic ion channels made of DNA.

Curr Opin Chem Biol

December 2024

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. Electronic address:

Natural ion channels have long inspired the design of synthetic nanopores with protein-like features. A significant leap towards this endeavor has been made possible using DNA origami. The exploitation of DNA as a building material has enabled the construction of biomimetic DNA nanopores with a range of pore dimensions and stimuli-responsive capabilities.

View Article and Find Full Text PDF

In case of severely burned bodies, victim identification by visual or fingerprints recognition is often prevented by altered body conditions. To overcome these circumstances, different techniques are available. Among these, the most reliable is molecular identification, especially in cases of detached body parts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!