Connectivity-Based Hierarchy (CBH) is an effective error-cancellation scheme for the determination of chemically accurate thermochemical properties of a variety of organic and biomolecules. Neutral molecules and open-shell radicals have already been treated successfully by this approach utilizing inexpensive computational methods such as density functional theory. Herein, we present an extension of the method to a new class of molecules, specifically, organic cations. Because of the presence of structural rearrangements involving hydrogen migrations as well as unusual structures such as bridged cations, the application of the standard CBH protocol to a test set of 25 cations leads to significant errors due to ineffective bond-type matching. We propose an adjusted protocol to overcome such limitations to achieve highly effective error cancellation. The modified CBH methods, in conjunction with a wide range of density functionals, reproduce G4 energies for the test set of organic cations accurately within 1-2 kcal/mol at a reduced computational cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.7b12202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!