Colwellia echini sp. nov., an agar- and carrageenan-solubilizing bacterium isolated from sea urchin.

Int J Syst Evol Microbiol

Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.

Published: February 2018

A novel bacterial strain, A3, was isolated from the intestines of the sea urchin Strongylocentrotus droebachiensis collected in Øresund, Denmark. The strain was Gram-reaction-negative, rod-shaped and facultatively anaerobic, and displayed growth at 5-25 °C (optimum 20 °C), pH 7-9 (optimum at pH 7) and 1-6 % (w/v) NaCl (optimum 3 %). Furthermore, strain A3 grew on agar, agarose, κ-carrageenan, alginate and laminarin as sole carbon source. Complete liquefaction of agar and κ-carrageenan was observed on solid plate media as a result of enzymatic activities. Major fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The respiratory quinones were determined to be ubiquinones Q-8 (92 %) and Q-7 (8 %), and polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 36.9 mol%. Phylogenetical analyses based on the 16S rRNA gene showed that the bacterium was affiliated with the genus Colwellia within the Alteromonadaceae of the Gammaproteobacteria. The level of 16S rRNA gene sequence similarity between strain A3 and its closest relatives in the genus Colwellia (C. psychrerythraea ATCC 27364 and C. asteriadis KMD 002) was 97.5 %. The average nucleotide identity between strain A3 and other members of Colwellia was 78.6-80.5 %, and DNA-DNA hybridization prediction revealed values of less than 23 % relatedness between strain A3 and other Colwellia species. The phenotypic, phylogenetic and genomic analyses support the hypothesis that strain A3 represents a novel species of the genus Colwellia, for which the name Colwellia echini sp. nov. is proposed. The type strain is A3 (=LMG 30125=NCIMB 15095).

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijsem.0.002568DOI Listing

Publication Analysis

Top Keywords

genus colwellia
12
colwellia echini
8
echini nov
8
sea urchin
8
strain
8
16s rrna
8
rrna gene
8
colwellia
7
nov agar-
4
agar- carrageenan-solubilizing
4

Similar Publications

sp. nov., isolated from the intestines of .

Int J Syst Evol Microbiol

January 2025

College of Life Science, Shenyang Normal University, Shenyang 110000, PR China.

A Gram-stain-negative, aerobic, motile, catalase-positive, oxidase-positive, short rod-shaped marine bacterium, designated as YIC-827, was isolated from Qingdao, Shandong Province, China. The results showed that cells of strain YIC-827 could grow optimally at 25-35 °C, pH 6.5-7.

View Article and Find Full Text PDF

Green algae, particularly species, are rich in complex polysaccharides, such as ulvan, which have significant potential for biotechnological applications. However, the biochemical properties of ulvan depolymerised products remain underexplored. The enzymatic depolymerisation of ulvan has garnered attention owing to its cost advantages over alternative methods.

View Article and Find Full Text PDF

A Redox-Enzyme Integrated Microbial Fuel Cell Design Using the Surface Display System in MR-1.

ACS Appl Mater Interfaces

January 2025

Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

A biofuel cell is an electrochemical device using exoelectrogen or biocatalysts to transfer electrons from redox reactions to the electrodes. While wild-type microbes and natural enzymes are often employed as exoelectrogen and biocatalysts, genetically engineered or modified organisms have been developed to enhance exoelectrogen activity. Here, we demonstrated a redox-enzyme integrated microbial fuel cell (REI-MFC) design based on an exoelectrogen-enhancing strategy that reinforces the electrogenic activity of MR1 by displaying an extra redox enzyme on the cell surface.

View Article and Find Full Text PDF

Background: Biotechnologies that utilize microorganisms as production hosts for lipid synthesis will enable an efficient and sustainable solution to produce lipids, decreasing reliance on traditional routes for production (either petrochemical or plant-derived) and supporting a circular bioeconomy. To realize this goal, continuous biomanufacturing processes must be developed to maximize productivity and minimize costs compared to traditional batch fermentation processes.

Results: Here, we utilized biofilms of the marine bacterium, Marinobacter atlanticus, to produce wax esters from succinate (i.

View Article and Find Full Text PDF

The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!