Purpose: Staphylococcus epidermidis is the predominant contaminant of platelet concentrates (PCs), a blood product used to treat patients with platelet deficiencies. This microorganism is able to form surface-attached aggregates (biofilms) in human skin. Herein, the abundance of S. epidermidis biofilm-producers in contaminated PCs compared to skin isolates was explored. Furthermore, the potential positive selection of S. epidermidis biofilm-producers during the blood donation process and PC manufacturing was investigated.

Methodology: Twenty-four S. epidermidis isolates obtained from contaminated PCs and 48 S. epidermidis isolates obtained from the venipuncture area of human volunteers were compared for their ability to form biofilms in laboratory media and in PCs using a semi quantitative crystal violet assay. Also, the presence of the biofilm-associated icaA and icaD genes was assessed by PCR-amplification.Results/Key findings.Biofilm production in laboratory media showed a higher number of S. epidermidis biofilm-producers in the skin-derived group (43.7 %) compared to the PC-derived isolates (25 %). However, all skin and PC isolates formed biofilms in PCs. The prevalence of ica-positive biofilm-producer isolates was similar in PC and skin isolates (16.6 and 18.8 %, respectively). In contrast, the abundance of ica-negative biofilm-producers was lower in PC isolates compared to skin isolates (8.3 vs 25 %, respectively).

Conclusion: Positive selection of S. epidermidis biofilm-producers during blood donation and PC manufacturing was not observed. Interestingly, ica-negative biofilm-producers seem to be negatively affected by skin disinfection, blood processing and PC storage. Furthermore, this study shows that S. epidermidis adopts a biofilm-forming phenotype in PCs regardless of its genetic background or origin.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.000673DOI Listing

Publication Analysis

Top Keywords

epidermidis biofilm-producers
16
skin isolates
16
epidermidis
9
isolates
9
staphylococcus epidermidis
8
human skin
8
platelet concentrates
8
contaminated pcs
8
compared skin
8
positive selection
8

Similar Publications

Exploring staphylococcus in urinary tract infections: A systematic review and meta-analysis on the epidemiology, antibiotic resistance and biofilm formation.

Diagn Microbiol Infect Dis

December 2024

Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco.

This study aimed to determine the epidemiology, biofilm formation and antibiotic resistance of staphylococci collected worldwide in the context of UTIs. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Forty studies from 23 countries were selected for quantitative review.

View Article and Find Full Text PDF

Background: Coagulase Negative Staphylococci have been widely associated with medical device implant treatment and immune-compromised patients. Despite having increasing interest in Coagulase Negative Staphylococci, few studies from Nepal have reported the association of these organisms with urinary tract infections, conjunctivitis, high vaginal swabs, and cerebrospinal fluid. This study was carried out to determine antibiotic susceptibility pattern and biofilm production among Coagulase Negative Staphylococci isolated from clinical samples at tertiary care hospital.

View Article and Find Full Text PDF

This study aimed to determine the prevalence of coagulase-negative staphylococci (CoNS) in meat processing lines for their pathogenic potential associated with biofilm formation, staphylococcal toxin genes, and antibiotic resistance in obtained isolates. Out of 270 samples, 56 isolates were identified as staphylococcal with their species level, and their antimicrobial resistance profiles were also determined with the BD Phoenix™ system. Among these, CoNS were found in 32 isolates, including S.

View Article and Find Full Text PDF

Background: In recent years, the demand for innovative antimicrobial agents has grown, considering the growing problem of antibiotic resistance in aquaculture. Adult Apis mellifera honeybees' gut represents an outstanding habitat to isolate novel lactic acid bacteria (LAB) able to produce prominent antimicrobial agents.

Methods: In the current study, twelve LAB were isolated and purified from the gut of adult Apis mellifera.

View Article and Find Full Text PDF

Biofilm-associated bacterial infections are problematic for physicians due to high antimicrobial resistance in biofilm-forming bacteria. species, particularly cause severe infections particularly associated with clinical implants. In this study, we have detected the biofilm formation potential of clinical isolates using phenotypic and genotypic approaches in nutrient-rich and nutrient-deficient growth conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!