Phrenic motor neuron adenosine 2A receptors elicit phrenic motor facilitation.

J Physiol

Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.

Published: April 2018

AI Article Synopsis

  • Activation of adenosine 2A (A2A) receptors specifically enhances phrenic nerve activity in the cervical spinal cord, but the results vary based on the cell type expressing these receptors.
  • Injections of siRNA targeting A2A receptors in phrenic motor neurons led to a significant reduction in their activity, confirming the necessity of these receptors for phrenic motor facilitation.
  • The findings suggest that increasing A2A receptor levels in phrenic motor neurons could be a potential strategy to enhance their excitability, especially following spinal cord injuries.

Article Abstract

Key Points: Although adenosine 2A (A ) receptor activation triggers specific cell signalling cascades, the ensuing physiological outcomes depend on the specific cell type expressing these receptors. Cervical spinal adenosine 2A (A ) receptor activation elicits a prolonged facilitation in phrenic nerve activity, which was nearly abolished following intrapleural A receptor siRNA injections. A receptor siRNA injections selectively knocked down A receptors in cholera toxin B-subunit-identified phrenic motor neurons, sparing cervical non-phrenic motor neurons. Collectively, our results support the hypothesis that phrenic motor neurons express the A receptors relevant to A receptor-induced phrenic motor facilitation. Upregulation of A receptor expression in the phrenic motor neurons per se may potentially be a useful approach to increase phrenic motor neuron excitability in conditions such as spinal cord injury.

Abstract: Cervical spinal adenosine 2A (A ) receptor activation elicits a prolonged increase in phrenic nerve activity, an effect known as phrenic motor facilitation (pMF). The specific cervical spinal cells expressing the relevant A receptors for pMF are unknown. This is an important question since the physiological outcome of A receptor activation is highly cell type specific. Thus, we tested the hypothesis that the relevant A receptors for pMF are expressed in phrenic motor neurons per se versus non-phrenic neurons of the cervical spinal cord. A receptor immunostaining significantly colocalized with NeuN-positive neurons (89 ± 2%). Intrapleural siRNA injections were used to selectively knock down A receptors in cholera toxin B-subunit-labelled phrenic motor neurons. A receptor knock-down was verified by a ∼45% decrease in A receptor immunoreactivity within phrenic motor neurons versus non-targeting siRNAs (siNT; P < 0.05). There was no evidence for knock-down in cervical non-phrenic motor neurons. In rats that were anaesthetized, subjected to neuromuscular blockade and ventilated, pMF induced by cervical (C3-4) intrathecal injections of the A receptor agonist CGS21680 was greatly attenuated in siA (21%) versus siNT treated rats (147%; P < 0.01). There were no significant effects of siA on phrenic burst frequency. Collectively, our results support the hypothesis that phrenic motor neurons express the A receptors relevant to A receptor-induced pMF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899988PMC
http://dx.doi.org/10.1113/JP275462DOI Listing

Publication Analysis

Top Keywords

phrenic motor
44
motor neurons
28
receptor activation
16
cervical spinal
16
phrenic
13
motor facilitation
12
adenosine receptor
12
sirna injections
12
motor
11
receptor
10

Similar Publications

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

The opioid epidemic is a pervasive health issue and continues to have a drastic impact on the United States. This is primarily because opioids cause respiratory suppression and the leading cause of death in opioid overdose is respiratory failure ( , opioid-induced respiratory depression, OIRD). Opioid administration can affect the frequency and magnitude of inspiratory motor drive by activating µ-opioid receptors that are located throughout the respiratory control network in the brainstem.

View Article and Find Full Text PDF

Introduction: Intrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) result in selective respiratory (, phrenic) motor neuron death and mimics aspects of motor neuron disease [(, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA)], such as breathing deficits. This rodent model allows us to study the impact motor neuron death has on the output of surviving phrenic motor neurons as well as the compensatory mechanisms that are recruited. Microglial density in the phrenic motor nucleus as well as cervical gene expression of markers associated with inflammation (.

View Article and Find Full Text PDF
Article Synopsis
  • High spinal cord injuries (SCIs) can cause diaphragm paralysis and breathing issues, largely due to chronic neuroinflammation that hinders recovery.
  • This study tested the impact of a glucose metabolism inhibitor, 2-deoxy-D-glucose (2-DG), on respiratory function and the production of neuroinflammatory markers in injured rats.
  • The results showed no significant improvement in diaphragm function or inflammation markers in the injured rats, while the treatment worsened conditions in healthy rats by increasing inflammation and ventilation.
View Article and Find Full Text PDF

Microglia regulate motor neuron plasticity via reciprocal fractalkine and adenosine signaling.

Nat Commun

November 2024

Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.

We report an important role for microglia in regulating neuroplasticity within phrenic motor neurons. Brief episodes of low oxygen (acute intermittent hypoxia; AIH) elicit a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF) that is regulated by the balance of competing serotonin vs adenosine-initiated cellular mechanisms. Serotonin arises from brainstem raphe neurons, but the source of adenosine is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!