The formation of the immunological synapse upon B cell activation critically depends on the rearrangement of the submembranous actin cytoskeleton. Polymerization of actin monomers into filaments provides the force required for B cell spreading on the antigen-presenting cell (APC). Interestingly, the actin network also participates in cellular signaling at multiple levels. Fluorescence microscopy plays a critical role in furthering our understanding of the various functions of the cytoskeleton, and has become an important tool in the studies on B cell activation. The actin cytoskeleton can be tracked in live cells with various fluorescent probes binding to actin, or in fixed cells typically with phalloidin staining. Here, we present the usage of TIRF microscopy and an image analysis workflow for studying the overall density and organization of the actin network upon B cell spreading on antigen-coated glass, a widely used model system for the formation of the immunological synapse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7474-0_18 | DOI Listing |
In addition to regulating the actin cytoskeleton, Cofilin also senses and responds to environmental stress. Cofilin can promote cell survival or death depending on context. Yet, many aspects of Cofilin's role in survival need clarification.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
βPix is a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases, which play important roles in dendritic spine morphogenesis by modulating actin cytoskeleton organization. The formation and plasticity of the dendritic spines are essential for normal brain function. Among the alternatively spliced βPix isoforms, βPix-b and βPix-d are expressed specifically in neurons.
View Article and Find Full Text PDFStem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.
View Article and Find Full Text PDFStructure
January 2025
Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK. Electronic address:
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA. Electronic address:
In vivo functions of the septin and actin cytoskeletons are closely intertwined, yet the mechanisms underlying septin-actin crosstalk have remained poorly understood. Here, we show that the yeast-bud-neck-associated Fes/CIP4 homology Bar-amphiphysin-Rvs (F-BAR) protein suppressor of yeast profilin 1 (Syp1)/FCHo uses its intrinsically disordered region (IDR) to directly bind and bundle filamentous actin (F-actin) and to physically link septins and F-actin. Interestingly, the only other F-BAR protein found at the neck during bud development, Hof1, has related activities and also potently inhibits the bud-neck-associated formin Bnr1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!