Thermal and shape topological robustness of heat switchers using nematic liquid crystals.

Eur Phys J E Soft Matter

Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil.

Published: February 2018

One interesting way to control heat is to use devices designed by transformation thermics, where artificial media are used. However, once manufactured (either repelling or concentrating heat, for example), besides being mono-purpose, such devices are designed according to a specific geometric boundary conditions. Another problem is the temperature dependence of the materials employed, since their properties are sometimes considered temperature-invariant. In this paper, we show that a previously proposed bi-objective heat switcher (Phys. Rev. E 89, 020501(R) (2014)) is in fact robust against temperature and geometric deformations, due to the topological properties of the molecular nematic orientation. Using a geometrical approach for heat propagation, by performing finite element simulations, we show that a device made by concentric cylinders with thermotropic nematic liquid crystal between them, sustains its functionality even with their molecular thermal conductivities depending on the temperature, achieving a 60% increase and a 44% decrease in the heat flux for each mode. Utilizing topological arguments we show that deformations on the surface of the outer cylinder do not break the operating mode (repeller or concentrator). We present a comparison between our geometrical approach and the transformation thermodynamics to give an additional explanation for the obtained results. We hope the presented device is useful for heat control under mechanical and thermal influence of the external environment.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/i2018-11623-xDOI Listing

Publication Analysis

Top Keywords

nematic liquid
8
devices designed
8
geometrical approach
8
heat
7
thermal shape
4
shape topological
4
topological robustness
4
robustness heat
4
heat switchers
4
switchers nematic
4

Similar Publications

The development of fibrous actuators with diverse actuation modes is expected to accelerate progress in active textiles, robotics, wearable electronics, and haptics. Despite the advances in responsive polymer-based actuating fibers, the available actuation modes are limited by the exclusive reliance of current technologies on thermotropic contraction along the fiber axis. To address this gap, the present study describes a reversible and spontaneous thermotropic elongation (~30%) in liquid crystal elastomer fibers produced via ultraviolet-assisted melt spinning.

View Article and Find Full Text PDF

Spatially programmed alignment and actuation in printed liquid crystal elastomers.

Proc Natl Acad Sci U S A

January 2025

John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.

Liquid crystal elastomers (LCEs) exhibit reversible shape morphing behavior when cycled above their nematic-to-isotropic transition temperature. During extrusion-based 3D printing, LCE inks are subjected to coupled shear and extensional flows that can be harnessed to spatially control the alignment of their nematic director along prescribed print paths. Here, we combine experiment and modeling to elucidate the effects of ink composition, nozzle geometry, and printing parameters on director alignment.

View Article and Find Full Text PDF

Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.

View Article and Find Full Text PDF

The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.

View Article and Find Full Text PDF

Ferroelectric Nematic Liquid Crystals Showing High Birefringence.

Adv Sci (Weinh)

January 2025

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China.

High birefringence nematic liquid crystals are particularly demanded for adaptive optics applications in the infrared spectrum because it enable a thinner cell gap for achieving fast response time and improved diffraction efficiency. The emerging ferroelectric nematic liquid crystals have attracted widespread interest in soft matter due to their unique combination of ferroelectricity and fluidity. However, the birefringence, which is one of the most important optical parameters in electro-optic devices, is not large enough (<0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!