A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

QTL-Seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.). | LitMetric

A major dwarfing region for plant height, asd1, was identified employing the next-generation sequencing-based QTL-Seq approach from a dwarf mutant and is demonstrated to be responsible for the dwarf nature with least penalty on yield in rice. The yield plateauing of modern rice is witnessed since many decades due to the narrow genetic base owing to the usage of a single recessive gene, i.e., semi-dwarf-1 (sd-1) for development of short-statured varieties throughout the world. This calls for the searching of alternate sources for short stature in rice. To this end, we made an attempt to uncover yet another, but valuable dwarfing gene employing next-generation sequencing (NGS)-based QTL-Seq approach. Here, we have identified a major QTL governing plant height on chromosome 1, i.e., alternate semi-dwarf 1 (asd1) from an F mapping population derived from a cross between a dwarf mutant, LND384, and a tall landrace, INRC10192. Fine mapping of asd1 region employing sequence-based indel markers delimited the QTL region to 67.51 Kb. The sequencing of the QTL region and gene expression analysis predicted a gene that codes for IWS1 (C-terminus family protein). Furthermore, marker-assisted introgression of the asd1 into tall landrace, INRC10192, reduced its plant height substantially while least affecting the yield and its component traits. Hence, this novel dwarfing gene, asd1, has profound implications in rice breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-018-2260-2DOI Listing

Publication Analysis

Top Keywords

plant height
12
employing next-generation
8
qtl-seq approach
8
dwarf mutant
8
dwarfing gene
8
tall landrace
8
landrace inrc10192
8
qtl region
8
region
5
rice
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!