Objective: Using diffusion tensor imaging (DTI), we examined chronic stable MS lesions, peri-lesional white matter (PLWM) and normal appearing white matter (NAWM) in patients with relapsing-remitting multiple sclerosis (RRMS) for evidence of progressive tissue destruction and evaluated whether diffusivity change is associated with conventional MRI parameters and clinical findings.

Method: Pre- and post-gadolinium T1, T2 and DTI images were acquired from 55 consecutive RRMS patients at baseline and 42.3 ± 9.7 months later. Chronic stable T2 lesions of sufficient size were identified in 43 patients (total of 134 lesions). Diffusivity parameters such as axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA) were compared at baseline and follow-up. MRI was also performed in 20 normal subjects of similar age and gender.

Results: Within the core of chronic MS lesions the diffusion of water molecules significantly increased over the follow-up period, while in NAWM all diffusivity indices remained stable. Since increase of AD and RD in lesional core was highly concordant, indicating isotropic nature of diffusivity change, and considering potential effect of crossing fibers on directionally-selective indices, only MD, a directionally-independent measure, was used for further analysis. The significant increase of MD in the lesion core during the follow-up period (1.29 ± 0.19 μm/ms and 1.34 ± 0.20 μm/ms at baseline and follow-up respectively,  < 0.0001) was independent of age or disease duration, total brain lesion volume or new lesion activity, lesion size or location and baseline tissue damage (T1 hypointensity). Change of MD in the lesion core, however, was associated with progressive brain atrophy ( = 0.47,  = 0.002). A significant gender difference was also observed: the MD change in male patients was almost twice that of female patients (0.030 ± 0.04 μm/ms and 0.058 ± 0.03 μm/ms in female and male respectively,  = 0.01). Sub-analysis of lesions with lesion-free surrounding revealed the largest MD increase in the lesion core, while MD progression gradually declined towards PLWM. MD in NAWM remained stable over the follow-up period.

Conclusion: The significant increase of isotropic water diffusion in the core of chronic stable MS lesions likely reflects gradual, self-sustained tissue destruction in demyelinated white matter that is more aggressive in males.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772506PMC
http://dx.doi.org/10.1016/j.nicl.2017.12.010DOI Listing

Publication Analysis

Top Keywords

evidence progressive
8
progressive tissue
8
core chronic
8
chronic lesions
8
chronic stable
8
stable lesions
8
white matter
8
diffusivity change
8
baseline follow-up
8
follow-up period
8

Similar Publications

Objectives: This paper aims to review the immunopathogenesis of Diabetes-associated periodontitis (DPD) and to propose a description of the research progress of drugs with potential clinical value from an immunotherapeutic perspective.

Materials And Methods: A comprehensive literature search was conducted in PubMed, MEDLINE, Embase, Web of Science, Scopus and the Cochrane Library. Inclusion criteria were studies on the association between diabetes and periodontitis using the Boolean operator "AND" for association between diabetes and periodontitis, with no time or language restrictions.

View Article and Find Full Text PDF

Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity.

Brain Topogr

January 2025

Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Aberrant large-scale resting-state functional connectivity (rsFC) has been frequently documented in ischemic stroke. However, it remains unclear about the altered patterns of within- and across-network connectivity. The purpose of this meta-analysis was to identify the altered rsFC in patients with ischemic stroke relative to healthy controls, as well as to reveal longitudinal changes of network dysfunctions across acute, subacute, and chronic phases.

View Article and Find Full Text PDF

Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.

View Article and Find Full Text PDF

Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD.

J Lipid Res

January 2025

Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation.

View Article and Find Full Text PDF

Introduction: Treatment options for patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) with disease progression on/after osimertinib and platinum-based chemotherapy are limited.

Methods: CHRYSALIS-2 Cohort A evaluated amivantamab+lazertinib in patients with EGFR exon 19 deletion- or L858R-mutated NSCLC with disease progression on/after osimertinib and platinum-based chemotherapy. Primary endpoint was investigator-assessed objective response rate (ORR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!