Today, monoclonal antibodies (mAbs) are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs) have been successfully developed. Non-LSAs (NLSAs) are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs-marketed or in development-to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776327PMC
http://dx.doi.org/10.3389/fimmu.2017.01936DOI Listing

Publication Analysis

Top Keywords

hematological malignancies
12
tumor cells
8
monoclonal antibody
4
antibody therapies
4
hematological
4
therapies hematological
4
malignancies
4
malignancies lineage-specific
4
lineage-specific targets
4
targets today
4

Similar Publications

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

JSH practical guidelines for hematological malignancies, 2023: leukemia-6. Myelodysplastic syndromes (MDS).

Int J Hematol

January 2025

Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a hematologic malignancy. It is the most common form of acute leukemia among adults. Recent treatment advances have drastically improved outcomes for these diseases, but the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS).

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is an aggressive hematological neoplasm. Little improvement in survival rates has been achieved over the past few decades. Necroptosis has relationship with certain types of malignancies outcomes.

View Article and Find Full Text PDF

Background: Prior research indicates that engaging in physical activity during chemotherapy can positively influence both physical and psychological parameters in individuals with hematological neoplasms. However, the most effective type, level, intensity, and frequency of exercise remains unclear.

Patients And Methods: We enrolled 53 patients to a clinical trial assessing a partly supervised hybrid training program including both strength and endurance components, commencing at onset of induction therapy (T0) for hematological malignancies, including AML (n = 29), ALL (n = 5), and NHL (n = 19).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!