The β-catenin and MDM2 oncoproteins are overexpressed and constitutively activated in human pancreatic cancer and contribute to its initiation, progression, and metastasis. The Wnt/β-catenin signaling pathway strongly interacts with the MDM2-p53 signaling pathway, accelerating the tumorigenesis and its development. Therefore, therapies inhibiting both β-catenin and MDM2 are suggested to be ideal treatments for patients with advanced pancreatic cancer. We have recently identified a novel class of β-carboline compounds as the specific and potent MDM2 inhibitors, including a lead compound SP141. In the present study, we utilized SP141 as an exemplary β-carboline compound to characterize β-catenin as a molecular target of the β-carboline compounds and to demonstrate an important role of β-catenin in the anticancer activity of β-carboline. We found that the silencing of either β-catenin or MDM2 largely reduced the anticancer activity of SP141 while the double silencing of both genes almost completely blocked SP141's activity. SP141 directly bound to β-catenin and inhibited its expression and activity in pancreatic cancer cells and . The inhibitory effects of SP141 on β-catenin were mediated by the ubiquitin-proteasome system in an MDM2-independent manner. In conclusion, these results suggest that SP141 exerts its anticancer activity by dually inhibiting β-catenin and MDM2. We envision that β-carboline derivatives can be developed as promising dual inhibitors of β-catenin and MDM2 for the treatment of advanced pancreatic cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776119 | PMC |
http://dx.doi.org/10.3389/fphar.2018.00005 | DOI Listing |
Phys Imaging Radiat Oncol
January 2025
Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
Background And Purpose: Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT).
Materials And Methods: We reviewed pancreatic cancer patients treated at our facility for model training and internal validation.
Ann Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFAnn Transl Med
December 2024
Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
World J Gastrointest Oncol
January 2025
Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
Aim: To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
World J Gastrointest Oncol
January 2025
Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan.
In this editorial, we will discuss the article by Tang published in the recent issue of the . They explored an innovative approach to enhancing gemcitabine (GEM) delivery and efficacy using human bone marrow mesenchymal stem cells (HU-BMSCs)-derived exosomes. The manufacture of GEM-loaded HU-BMSCs-derived exosomes (Exo-GEM) has been optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!