Epigenetic variation has been proposed to facilitate adaptation to changing environments, but evidence that natural epialleles contribute to adaptive evolution has been lacking. Here we identify a retrotransposon, named "NMR19" (naturally occurring DNA methylation variation region 19), whose methylation and genomic location vary among Arabidopsis thaliana accessions. We classify NMR19 as NMR19-4 and NMR19-16 based on its location, and uncover NMR19-4 as an epiallele that controls leaf senescence by regulating the expression of PHEOPHYTIN PHEOPHORBIDE HYDROLASE (PPH). We find that the DNA methylation status of NMR19-4 is stably inherited and independent of genetic variation. In addition, further analysis indicates that DNA methylation of NMR19-4 correlates with local climates, implying that NMR19-4 is an environmentally associated epiallele. In summary, we discover a novel epiallele, and provide mechanistic insights into its origin and potential function in local climate adaptation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792623 | PMC |
http://dx.doi.org/10.1038/s41467-018-02839-3 | DOI Listing |
J Neuroinflammation
January 2025
Department of Medical and Translational Biology, Umeå university, Umeå, 901 87, Sweden.
Background: Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.
Background: The DNA methylation-based epigenetic clocks are increasingly recognized for their precision in predicting aging and its health implications. Although prior research has identified connections between accelerated epigenetic aging and multiple sclerosis, the chronological and causative aspects of these relationships are yet to be elucidated. Our research seeks to clarify these potential causal links through a bidirectional Mendelian randomization study.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2025
Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA.
Postpartum depression (PPD) affects ~10-15% of childbearing individuals, with deleterious consequences for two generations. Recent research has explored the biological mechanisms of PPD, particularly neuroactive steroids (NAS). We sought here to investigate associations between NAS levels and ratios during pregnancy and the subsequent development of depressive symptoms with postpartum onset.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Traditional Chinese Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, 6 Taoyuan Road, Qingxiu District, Nanning City, Guangxi Zhuang Autonomous Region, People's Republic of China.
Stomach adenocarcinoma (STAD) is a common malignancy with high heterogeneity and a lack of highly precise treatment options. We downloaded the multiomics data of STAD patients in The Cancer Genome Atlas (TCGA)-STAD cohort, which included mRNA, microRNA, long non-coding RNA, somatic mutation, and DNA methylation data, from the sxdyc website. We synthesized the multiomics data of patients with STAD using 10 clustering methods, construct a consensus machine learning-driven signature (CMLS)-related prognostic models by combining 10 machine learning methods, and evaluated the prognosis models using the C-index.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands.
Background: Repetitive neonatal painful procedures experienced in the neonatal intensive care unit (NICU) are known to alter the development of the nociceptive system and have long-lasting consequences. Recent evidence indicates that NICU stay affects the methylation of the opioid receptor mu 1 encoding gene (Mor-1). Additionally, a preclinical model of neonatal procedural pain established lower adult post-operative MOR-1 levels in the spinal cord.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!