Mechanisms that regulate spermatogenesis in mice are important to define as they often apply to fertility in man. We previously showed that conditional deletion of the mouse Mgat1 gene (Mgat1 cKO) in spermatogonia causes a germ-cell autonomous defect leading to infertility. MGAT1 is the N-acetylglucosaminyltransferase (GlcNAcT-I) that initiates the synthesis of complex N-glycans. Mechanistic bases of MGAT1 loss were investigated in germ cells from 22- and 23-day males, before any changes in germ cell morphology were apparent. Gene expression changes induced by deletion of Mgat1 were determined using the Affymetrix gene chip Mouse Mogene 2.0 ST array, and relationships were investigated by bioinformatics including Gene Ontology (GO), Ingenuity Pathway Analysis (IPA), and Gene Set Enrichment Analysis (GSEA). The loss of complex N-glycans promoted the premature up-regulation of genes normally expressed later in spermatogenesis and spermiogenesis, and IPA and GSEA implicated ERK signaling. EGFR and PDGFRA transcripts and ERK1/2 signaling were reduced in 22-day Mgat1 cKO germ cells. Basigin, a germ cell target of MGAT1, activated ERK1/2 in CHO cells, but not in a Lec1 CHO mutant that lacks MGAT1 and complex N-glycans. Thus, MGAT1 is required to regulate ERK1/2 signaling during spermatogenesis, potentially via different mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792458PMC
http://dx.doi.org/10.1038/s41598-018-20465-3DOI Listing

Publication Analysis

Top Keywords

complex n-glycans
16
mgat1
10
mgat1 complex
8
erk signaling
8
signaling spermatogenesis
8
spermatogenesis mechanisms
8
mgat1 cko
8
germ cells
8
germ cell
8
erk1/2 signaling
8

Similar Publications

Down syndrome (DS), a genetic condition caused by trisomy 21 (T21), manifests various neurological symptoms, including intellectual disability, early neurodegeneration, and early-onset dementia. N-glycosylation is a protein modification that plays a critical role in numerous neurobiological processes and whose dysregulation is associated with a range of neurological disorders. However, whether N-glycosylation of neural glycoproteins is affected in DS has not been studied.

View Article and Find Full Text PDF

Colorectal cancer is the second leading cause of cancer-related deaths worldwide, and its development typically involves complex metabolic reprogramming. By mapping the spatial distributions of metabolites and -glycans in heterogeneous colorectal cancer tissues, we can elucidate cancer-associated metabolic and -glycan changes. Herein, we combine mass spectrometry imaging-based metabolomics and -glycomics to characterize the spatially resolved reprogramming of metabolites and -glycans in colorectal cancer tissues.

View Article and Find Full Text PDF

Carbohydrate sulfation plays a pivotal role in modulating the strength of Siglec-glycan interactions. Recently, new aspects of Siglec binding to sulfated cell surface carbohydrates have been discovered, but the class of glycan presenting these sulfated Siglec ligands has not been fully elucidated. In this study, the contribution of different classes of glycans to and Siglec ligands was investigated within cells expressing the carbohydrate sulfotransferase 1 (CHST1) or CHST2.

View Article and Find Full Text PDF

Protein -glycosylation, as one of the most crucial post-translational modifications, plays a significant role in various biological processes. The structural alterations of -glycans are closely associated with the onset and progression of numerous diseases. Therefore, the precise and specific identification of disease-related -glycans in complex biological samples is invaluable for understanding their involvement in physiological and pathological processes, as well as for discovering clinical diagnostic biomarkers.

View Article and Find Full Text PDF

Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!