GBA encodes the lysosomal enzyme glucocerebrosidase (GCase), an enzyme involved in sphingolipid metabolism. Mutations in the GBA gene are numerically the most important risk factor for developing Parkinson disease (PD) accounting for at least 5% of all PD cases. Furthermore, loss of GCase activity is found in sporadic PD brains. Lysosomal dysfunction is thought to play a principal role in PD pathogenesis and in particular its effect on the metabolism of α-synuclein. A hallmark of PD is the presence of intraneuronal protein inclusions called Lewy bodies, which are composed mainly of α-synuclein. Cellular and animal models of GCase deficiency result in lysosomal dysfunction, and in particular the autophagy lysosome pathway, resulting in the accumulation of α-synuclein. Some forms of mutant GCase unfold in the endoplasmic reticulum activating the unfolded protein response, which might also contribute to PD pathogenesis. It has also been suggested that accumulation of GCase substrates glucosylceramide/glucosylsphingosine may contribute to GBA-PD pathogenesis. Mitochondrial dysfunction and neuroinflammation are associated with GCase deficiency and have also been implicated in the aetiology of PD. This review discusses these points and highlights potential treatments that might be effective in treating GCase deficiency in PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.14393 | DOI Listing |
Neuroscience
December 2024
Department of Neurobiology and National Clinical Research Center for Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory for Parkinson's Disease, Beijing, China. Electronic address:
The brain of patients with Parkinson's disease (PD) was characterized by increased phosphorylation and oligomerization of α-synuclein (α-syn) and altered activity of enzymes regulating α-syn phosphorylation and oligomerization. Whether increased α-syn phosphorylation and oligomerization as well as related enzyme changes can be detected in the plasma of PD patients remains unclear. Here, we showed that human α-syn proteins incubated in PD plasma formed more oligomerized α-syn (O-α-syn) and phosphorylated α-syn (pS-α-syn) than those in healthy control (HC) plasma.
View Article and Find Full Text PDFPLoS Genet
November 2024
Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America.
Mutations in GBA (glucosylceramidase beta), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the strongest genetic risk factor for the neurodegenerative disorders Parkinson's disease (PD) and Lewy body dementia. Recent work has suggested that neuroinflammation may be an important factor in the risk conferred by GBA mutations. We therefore systematically tested the contributions of immune-related genes to neuropathology in a Drosophila model of GCase deficiency.
View Article and Find Full Text PDFCells
September 2024
Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
The human gene encodes lysosomal acid β-glucocerebrosidase, whose activity is deficient in Gaucher disease (GD). In , there are two orthologs, and , and is the bona fide GCase encoding gene. Several fly lines with different deletions in the were studied in the past.
View Article and Find Full Text PDFMol Genet Metab
October 2024
Amsterdam UMC location University of Amsterdam, Department of Pediatrics, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Research Institute, Amsterdam, the Netherlands. Electronic address:
Rationale: Gaucher disease (GD), an autosomal recessive lysosomal storage disease, results from GBA1 variants causing glucocerebrosidase (GCase) deficiency. While enzyme replacement therapy (ERT) helps with systemic symptoms, neurological complications in GD2 and GD3 persist due to the blood-brain-barrier (BBB) limiting ERT efficacy. Ambroxol, a BBB-permeable chaperone, enhances GCase activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!