Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792106 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191652 | PLOS |
BMC Plant Biol
January 2025
Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China.
Background: Stemona tuberosa, a vital species in traditional Chinese medicine, has been extensively cultivated and utilized within its natural distribution over the past decades. While the chloroplast genome of S. tuberosa has been characterized, its mitochondrial genome (mitogenome) remains unexplored.
View Article and Find Full Text PDFElife
January 2025
Institut Pasteur, Université Paris Cité, Unité Plasticité du Génome Bactérien, Paris, France.
Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). is required for optimal growth of in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna 1030, Austria.
The need for high-quality protist genomes has prevented in-depth computational and experimental studies of giant virus-host interactions. In addition, our current knowledge of host range is highly biased due to the few hosts used to isolate novel giant viruses. This study presents 6 high-quality amoeba genomes from known and potential giant virus hosts belonging to 2 distinct eukaryotic clades: Amoebozoa and Discoba.
View Article and Find Full Text PDFIran J Public Health
December 2024
School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India.
Background: Nipah virus is a pathogenic virus of ruinous zoonotic potential with inflated rate of mortality in humans.
Methods: Considering the emerging threat of this pandemic virus, the present investigation amid to design vaccine by using the bioinformatics tools such as host and virus codon usage analysis, CD8+ peptide prediction, immunogenicity/allergenicity/toxicity, MHC-I allele binding prediction and subsequent population coverage and MHC-I-peptide docking analysis.
Results: In this study (conducted in 2022 at School of Biotechnology, Katra, India), a set of 11 peptides of the structural proteins of Nipah Virus were predicted and recognized by the set of MHC-I alleles that are expressed in 92% of the global human population.
Nat Microbiol
January 2025
Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
Synechococcus is a significant primary producer in the oceans, coexisting with cyanophages, which are important agents of mortality. Bacterial resistance against phage infection is a topic of significant interest, yet little is known for ecologically relevant systems. Here we use exogenous gene expression and gene disruption to investigate mechanisms underlying intracellular resistance of marine Synechococcus WH5701 to the Syn9 cyanophage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!