Undesired reactions at the interface between a transition metal oxide cathode and a nonaqueous electrolyte bring about challenges to the performance of Li-ion batteries in the form of compromised durability. These challenges are especially severe in extreme conditions, such as above room temperature or at high potentials. The ongoing push to increase the energy density of Li-ion batteries to break through the existing barriers of application in electric vehicles creates a compelling need to address these inefficiencies. This goal requires a combination of deep knowledge of the mechanisms underpinning reactivity, and the ability to assemble multifunctional electrode systems where different components synergistically extend cycle life by imparting interfacial stability, while maintaining, or even increasing, capacity and potential of operation. The barriers toward energy storage at high density apply equally in Li-ion, the leading technology in the battery market, and in related, emerging concepts for high energy density, such as Na-ion and Mg-ion, because they also conceptually rely on electroactive transition metal oxides. Therefore, their relevance is broad and the quest for solutions inevitable. In this Account, we describe mechanisms of reaction that can degrade the interface between a Li-ion battery electrolyte and the cathode, based on an oxide with transition metals that can reach high formal oxidation states. The focus is placed on cathodes that deliver high capacity and operate at high potential because their development would enable Li-ion battery technologies with high capacity for energy storage. Electrode-electrolyte instabilities will be identified beyond the intrinsic potential windows of stability, by linking them to the electroactive transition metals present at the surface of the electrode. These instabilities result in irreversible transformations at these interfaces, with formation of insulating layers that impede transport or material loss due to corrosion. As a result, strategies that screen the reactive surface of the oxide, while reducing the transition metal content by introducing inactive ions emerge as a logical means toward interfacial stability. Yet they must be implemented in the form of thin passivating barriers to avoid unacceptable losses in storage capacity. This Account subsequently describes our current ability to build composite structures that include the active material and phases designed to address deleterious reactions. We will discuss emerging strategies that move beyond the application of such barriers on premade agglomerated powders of the material of interest. The need for these strategies will be rationalized by the goal to effectively passivate all interfaces while fully controlling the chemistry that results at the surface and its homogeneity. Such outcomes would successfully minimize interfacial losses, thereby leading to materials that exceed the charge storage and life capabilities possible today. Practically speaking, it would create opportunities to design batteries that break the existing barriers of energy density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.7b00482 | DOI Listing |
Adv Sci (Weinh)
December 2024
Institute of Materials Science, Technische Universität Darmstadt, Peter-Grünberg-Str. 2, D-64287, Darmstadt, Germany.
The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy.
Hydrogen-based electric vehicles such as Fuel Cell Electric Vehicles (FCHEVs) play an important role in producing zero carbon emissions and in reducing the pressure from the fuel economy crisis, simultaneously. This paper aims to address the energy management design for various performance metrics, such as power tracking and system accuracy, fuel cell lifetime, battery lifetime, and reduction of transient and peak current on Polymer Electrolyte Membrane Fuel Cell (PEMFC) and Li-ion batteries. The proposed algorithm includes a combination of reinforcement learning algorithms in low-level control loops and high-level supervisory control based on fuzzy logic load sharing, which is implemented in the system under consideration.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
National Research and Development Institute for Forestry "Marin Drăcea"-INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania.
Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Pohang, Republic of Korea.
Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China. Electronic address:
Due to their high energy density, low cost, and environmental friendliness, aqueous zinc-ion batteries are considered a potential alternative to Li-ion batteries. However, dendrite growth and parasitic reactions of water molecules limit their practical applications. Herein, an ionic liquid additive, 1-butyl-3-methylimidazolium Bis(fluorosulfonyl)imide (BMImFSI), is introduced to regulate the electrical double layer (EDL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!