A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-Crosslink Physical Hydrogels with High Toughness Based on Synergistic Hydrogen Bonding and Hydrophobic Interactions. | LitMetric

Dual-Crosslink Physical Hydrogels with High Toughness Based on Synergistic Hydrogen Bonding and Hydrophobic Interactions.

Macromol Rapid Commun

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Published: July 2018

Constructing dual or multiple noncovalent crosslinks is highly effective to improve the mechanical and stimuli-responsive properties of supramolecular physical hydrogels, due to the synergistic effects of different noncovalent bonds. Herein, a series of tough physical hydrogels are prepared by solution casting and subsequently swelling the films of poly(ureidopyrimidone methacrylate-co-stearyl acrylate-co-acrylic acid). The hydrophobic interactions between crystallizable alkyl chains and the quadruple hydrogen bonds between ureidopyrimidone (UPy) motifs serve as the dual crosslinks of hydrogels. Synergistic effects between the hydrophobic interactions and hydrogen bonds render the hydrogels excellent mechanical properties, with tensile breaking stress up to 4.6 MPa and breaking strain up to 680%. The UPy motifs promote the crystallization of alkyl chains and the hydrophobic alkyl chains also stabilize UPy-UPy hydrogen bonding. The resultant hydrogels are responsive to multiple external stimuli, such as temperature, pH, and ion; therefore, they show the thermal-induced dual and metal ion-induced triple shape memory behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201700806DOI Listing

Publication Analysis

Top Keywords

physical hydrogels
12
hydrophobic interactions
12
alkyl chains
12
hydrogen bonding
8
hydrogels synergistic
8
synergistic effects
8
hydrogen bonds
8
upy motifs
8
hydrogels
6
dual-crosslink physical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!