Magnesium Reduces Blood-Brain Barrier Permeability and Regulates Amyloid-β Transcytosis.

Mol Neurobiol

Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, 422 Siming S Rd, Siming Qu, Xiamen Shi, Fujian Sheng, 361005, China.

Published: September 2018

Poor Mg status is a risk factor for Alzheimer's disease (AD), and the underlying mechanisms remain elusive. Here, we provided the first evidence that elevated Mg levels significantly reduced the blood-brain barrier (BBB) permeability and regulated its function in vitro. Transient receptor potential melastatin 7 (TRPM7) and magnesium transporter subtype 1 (MagT1) were two major cellular receptors mediating entry of extracellular Mg into the cells. Elevated Mg levels also induced an accelerated clearance of amyloid-β peptide (Aβ) from the brain to the blood side via BBB transcytosis through low-density lipoprotein receptor-related protein (LRP) and phosphatidylinositol binding clathrin assembly protein (PICALM), while reduced the influx of Aβ from the blood to the brain side involving receptor for advanced glycation end products (RAGE) and caveolae. Mg enhanced BBB barrier properties and overall expression of LRP1 and PICALM whereas reduced that of RAGE and caveolin-1. Apical-to-basolateral and vice versa steady-state Aβ flux achieved an equilibrium of 18 and 0.27 fmol/min/cm, respectively, about 30 min after the initial addition of physiological levels of free Aβ. Knockdown of caveolin-1 or disruption of caveolae membrane microdomains reduced RAGE-mediated influx significantly, but not LRP1-mediated efflux of Aβ. Stimulating endothelial cells with vascular endothelial growth factor (VEGF) enhanced caveolin-1 phosphorylation and RAGE expression. Co-immunoprecipitation demonstrated that RAGE, but not LRP1, was physically associated with caveolin-1. Thus, Mg can reduce BBB permeability and promote BBB clearance of Aβ from the brain by increasing the expression of LRP1 and PICALM while reducing the level of RAGE and caveolin-1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-018-0896-0DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
8
elevated levels
8
bbb permeability
8
aβ brain
8
picalm reduced
8
expression lrp1
8
lrp1 picalm
8
rage caveolin-1
8
6
bbb
5

Similar Publications

The blood-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain that could fight central nervous system diseases such as Alzheimer's disease and strokes. However, techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with bioconjugation achieved bio-orthogonal tetrazine/norbornene click chemistry. A series of lanthanide-tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-barrier.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Brain-targeting drug delivery systems: The state of the art in treatment of glioblastoma.

Mater Today Bio

February 2025

Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.

Glioblastoma (GBM) is the most prevalent primary malignant brain tumor, characterized by a high mortality rate and a poor prognosis. The blood-brain barrier (BBB) and the blood-tumor barrier (BTB) present significant obstacles to the efficacy of tumor-targeted pharmacotherapy, thereby impeding the therapeutic potential of numerous candidate drugs. Targeting delivery of adequate doses of drug across the BBB to treat GBM has become a prominent research area in recent years.

View Article and Find Full Text PDF

Even with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' nonspecificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches.

View Article and Find Full Text PDF

Navigating the blood-brain barrier: enhancing blood culture practices in the neuro-ICU.

Infect Control Hosp Epidemiol

January 2025

Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA.

This study evaluates the implementation of a blood culture (BCx) algorithm in the neurology ICU (NICU) to reduce BCx event (BCE) rates. Results show a reduction in BCE rates, without increasing adverse outcomes. The findings support the feasibility of BCx algorithms for improving diagnostic stewardship in the specialized NICU population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!