Assessment of sulforaphane-induced protective mechanisms against cadmium toxicity in human mesenchymal stem cells.

Environ Sci Pollut Res Int

Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia.

Published: April 2018

Cd is a hazardous substance and carcinogen that is present in the environment; it is known to cause toxic effects in living organisms. Sulforaphane is a naturally available phytochemical with antioxidant, anti-inflammatory, and anticarcinogenic properties. However, the effects of sulforaphane on Cd toxicity in human mesenchymal stem cells (hMSCs) are unknown. In the present study, we investigated the molecular mechanisms of the effects of sulforaphane on Cd toxicity in hMSCs by using MTT assays, acridine orange/ethidium bromide staining, Hoechst staining, LysoRed staining, assessment of mitochondrial membrane potential, and gene expression analysis. Cd decreased hMSC viability in a dose-dependent manner with an IC value of 56.5 μM. However, sulforaphane did not induce any significant reduction in cell viability. Nuclear morphological analysis revealed that Cd induced necrotic cell death. Additionally, Cd caused mitochondrial membrane potential loss in hMSCs. The treatment of Cd-exposed cells with sulforaphane (Cd-sulforaphane co-treatment) resulted in a significant recovery of the cell viability and nuclear morphological changes compared with that of cells treated with Cd only. The gene expression pattern of cells co-treated with Cd-sulforaphane was markedly different from that of Cd-treated cells, owing to the reduction in Cd toxicity. Our results clearly indicated that sulforaphane reduced Cd-induced toxic effects in hMSCs. Overall, the results of our study suggested that sulforaphane-rich vegetables and fruits can help to improve human health through amelioration of the molecular effects of Cd poisoning.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-1228-7DOI Listing

Publication Analysis

Top Keywords

toxicity human
8
human mesenchymal
8
mesenchymal stem
8
stem cells
8
toxic effects
8
effects sulforaphane
8
sulforaphane toxicity
8
mitochondrial membrane
8
membrane potential
8
gene expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!