AI Article Synopsis

  • Only a few studies have successfully discovered inhibitors by screening over a million compounds, mainly due to challenges in finding potent inhibitors and the need for user-friendly screening tools.
  • The Screenlamp toolkit was developed to address these issues, and it effectively screened over 12 million molecules to find potent inhibitors for a specific receptor related to sea lamprey reproduction.
  • The project successfully demonstrated the value of hypothesis-driven screening, identifying multiple active compounds based on key structural features of the target ligand.

Article Abstract

While the advantage of screening vast databases of molecules to cover greater molecular diversity is often mentioned, in reality, only a few studies have been published demonstrating inhibitor discovery by screening more than a million compounds for features that mimic a known three-dimensional (3D) ligand. Two factors contribute: the general difficulty of discovering potent inhibitors, and the lack of free, user-friendly software to incorporate project-specific knowledge and user hypotheses into 3D ligand-based screening. The Screenlamp modular toolkit presented here was developed with these needs in mind. We show Screenlamp's ability to screen more than 12 million commercially available molecules and identify potent in vivo inhibitors of a G protein-coupled bile acid receptor within the first year of a discovery project. This pheromone receptor governs sea lamprey reproductive behavior, and to our knowledge, this project is the first to establish the efficacy of computational screening in discovering lead compounds for aquatic invasive species control. Significant enhancement in activity came from selecting compounds based on one of the hypotheses: that matching two distal oxygen groups in the 3D structure of the pheromone is crucial for activity. Six of the 15 most active compounds met these criteria. A second hypothesis-that presence of an alkyl sulfate side chain results in high activity-identified another 6 compounds in the top 10, demonstrating the significant benefits of hypothesis-driven screening.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-018-0100-7DOI Listing

Publication Analysis

Top Keywords

inhibitor discovery
8
invasive species
8
species control
8
screening
5
compounds
5
enabling hypothesis-driven
4
hypothesis-driven prioritization
4
prioritization ligand
4
ligand candidates
4
candidates big
4

Similar Publications

Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target.

Adv Biol Regul

December 2024

Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland. Electronic address:

Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use.

View Article and Find Full Text PDF

Lanosterol 14α-Demethylase (CYP51)/Heat Shock Protein 90 (Hsp90) Dual Inhibitors for the Treatment of Invasive Candidiasis.

J Med Chem

January 2025

The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China.

Invasive candidiasis has attracted global attention with a high incidence and mortality. Current antifungal drugs are limited by unfavorable therapeutic efficacy, significant hepatorenal toxicity, and the development of drug resistance. Herein, we designed the first generation of lanosterol 14α-demethylase (CYP51)/heat shock protein 90 (Hsp90) dual inhibitors on the basis of antifungal synergism.

View Article and Find Full Text PDF

Marine natural products show a large variety of unique chemical structures and potent biological activities. Elucidating the target molecule and the mechanism of action is an essential and challenging step in drug development starting with a natural product. Odoamide, a member of aurilide-family isolated from Okinawan marine cyanobacterium, has been known to exhibit highly potent cytotoxicity against various cancer cell lines.

View Article and Find Full Text PDF

Discovery of novel dual-target inhibitors of LSD1/EGFR for non-small cell lung cancer therapy.

Acta Pharmacol Sin

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.

Histone lysine-specific demethylase 1 (LSD1) is overexpressed in various solid and hematological tumors, suggesting its potential as a therapeutic target, but there are currently no LSD1 inhibitors available on the market. In this study we employed a computer-guided approach to identify novel LSD1/EGFR dual inhibitors as a potential therapeutic agent for non-small cell lung cancer. Through a multi-stage virtual screening approach, we found L-1 and L-6, two compounds with unique scaffolds that effectively inhibit LSD1 with IC values of 6.

View Article and Find Full Text PDF

Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations.

Nat Prod Bioprospect

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.

In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!