The role of macrophages during acute kidney injury: destruction and repair.

Pediatr Nephrol

Department of Developmental Biology, University of Pittsburgh School of Medicine, 3501 5th Ave., 5061 BST3, Pittsburgh, PA, 15213, USA.

Published: April 2019

AI Article Synopsis

  • Acute kidney injury (AKI) is characterized by a rapid decline in kidney function, marked by an influx of immune cells, particularly macrophages, which are crucial in managing the injury and initiating repair.
  • Macrophages have a dual role; they can switch between a "pro-inflammatory" state that promotes inflammation and a "pro-reparative" state that aids in healing the tissue.
  • Understanding how macrophages function throughout AKI opens pathways for developing new therapies aimed at enhancing tissue repair during recovery from kidney injury.

Article Abstract

Acute kidney injury (AKI) is defined by a rapid decline in renal function. Regardless of the initial cause of injury, the influx of immune cells is a common theme during AKI. While an inflammatory response is critical for the initial control of injury, a prolonged response can negatively affect tissue repair. In this review, we focus on the role of macrophages, from early inflammation to resolution, during AKI. These cells serve as the innate defense system by phagocytosing cellular debris and pathogenic molecules and bridge communication with the adaptive immune system by acting as antigen-presenting cells and secreting cytokines. While many immune cells function to initiate inflammation, macrophages play a complex role throughout AKI. This complexity is driven by their functional plasticity: the ability to polarize from a "pro-inflammatory" phenotype to a "pro-reparative" phenotype. Importantly, experimental and translational studies indicate that macrophage polarization opens the possibility to generate novel therapeutics to promote repair during AKI. A thorough understanding of the biological roles these phagocytes play during both injury and repair is necessary to understand the limitations while furthering the therapeutic application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6066473PMC
http://dx.doi.org/10.1007/s00467-017-3883-1DOI Listing

Publication Analysis

Top Keywords

role macrophages
8
acute kidney
8
kidney injury
8
immune cells
8
injury
5
aki
5
macrophages acute
4
injury destruction
4
repair
4
destruction repair
4

Similar Publications

Estrogen significantly impacts women's health, and postmenopausal hypertension is a common issue characterized by blood pressure fluctuations. Current control strategies for this condition are limited in efficacy, necessitating further research into the underlying mechanisms. Although metabolomics has been applied to study various diseases, its use in understanding postmenopausal hypertension is scarce.

View Article and Find Full Text PDF

Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.

View Article and Find Full Text PDF

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice.

J Clin Invest

January 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFUs) are a significant contributor to disability and mortality in diabetic patients. Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing. However, the complex mechanism, the difficulty in clinical translation, and the large heterogeneity present significant challenges.

View Article and Find Full Text PDF

Antiviral therapy for hepatitis B virus infection is beneficial for the prognosis hepatocellular carcinoma.

World J Gastrointest Oncol

January 2025

Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China.

In this editorial, we comment on the article by Mu , published in the recent issue of the . We pay special attention to the immune tolerance mechanism caused by hepatitis B virus (HBV) infection, the pathogenesis of hepatocellular carcinoma (HCC), and the role of antiviral therapy in treating HCC related to HBV infection. HBV infection leads to systemic innate immune tolerance by directly inhibiting pattern recognition receptor recognition and antiviral signaling pathways, as well as by inhibiting the immune functions of macrophages, natural killer cells and dendritic cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!