Sevoflurane preconditioning promotes activation of resident CSCs by transplanted BMSCs via miR-210 in a rat model for myocardial infarction.

Oncotarget

Institute of Genetic Medicine, School of Life Science, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.

Published: December 2017

Objective: To assess the effect of sevoflurane preconditioning (SFpre) on bone marrow mesenchymal stem cells (BMSCs) for the treatment of acute myocardial infarction.

Results: 24 hours after the transplantation, decreased apoptosis of implanted BMSCs and up-regulation of cytokines expression were found within the ischemic area in BMSCs group compared with BMSCs group ( < 0.05). 4 weeks later, BMSCs group showed more viable implanted BMSCs, CSC-derived cardiomyocytes, and higher vessel and myocardial density within the infarcted region and improved cardiac function, compared with control and BMSCs groups ( < 0.05). Compared with untreated BMSCs, promoted migration, inhibited apoptosis, increased cytokine secretion, and enhanced activation to CSCs were detected in BMSCs exposed to profound hypoxia and serum deprivation, via up-regulating miR-210 expression ( < 0.05).

Conclusions: Sevoflurane preconditioning can protect BMSCs against hypoxia by activating miR-210 expression and promote their paracrine functions and effects on resident CSCs.

Methods: After the preconditioning, rat BMSCs (BMSCs group) were transplanted into rat AMI models, while BMSCs group received unconditioned BMSCs. Apoptosis and paracrine functions of the transplanted BMSCs, angiogenesis, resident cardiac stem cells (CSCs) derived myocardial regeneration, cardiac function and remodeling were assessed at various time points. experiments were performed to determine the expression of miR-210 in BMSCs exposed to sevoflurane and the effect of sevoflurane on BMSCs' migration, apoptosis and secretion of cytokines under hypoxic condition, as well as cytokine-induced CSCs activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777720PMC
http://dx.doi.org/10.18632/oncotarget.23062DOI Listing

Publication Analysis

Top Keywords

bmscs group
20
bmscs
17
sevoflurane preconditioning
12
transplanted bmscs
8
stem cells
8
implanted bmscs
8
cardiac function
8
bmscs exposed
8
mir-210 expression
8
paracrine functions
8

Similar Publications

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Late-onset hypogonadism (LOH) refers to sexual and non-sexual symptoms in men caused by age-related decreases in circulating testosterone. Leydig cells (LCs) transplantation is considered to be one of a viable approach for LOH therapy, but the limited source of LCs limits the application of this approach. The aim of this study was to induce the directed differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into LCs in vitro, and explore the potential involvement of Wnt/β-catenin signaling pathway in the differentiation process.

View Article and Find Full Text PDF

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore mitochondrial transfer in dental mesenchymal stem cells (MSCs) and its impact on their ability to differentiate into odontogenic cells.
  • Flow cytometry, immunostaining, and advanced imaging techniques were utilized to analyze the presence and significance of mitochondrial transfer in these cells, revealing its role in promoting odontogenic differentiation.
  • The research found evidence of mitochondrial transfer through structures called tunneling nanotubes (TNTs) and showed that inhibiting this transfer affected key differentiation markers and gene expression related to odontogenesis.
View Article and Find Full Text PDF

This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!