A comprehensive rational thermal material design paradigm requires the ability to reduce and enhance the thermal conductivities of nanomaterials. In contrast to the existing ability to reduce the thermal conductivity, methods that allow to enhance heat conduction are currently limited. Enhancing the nanoscale thermal conductivity could bring radical improvements in the performance of electronics, optoelectronics, and photovoltaic systems. Here, we show that enhanced thermal conductivities can be achieved in semiconductor nanostructures by rationally engineering phonon spectral coupling between materials. By embedding a germanium film between silicon layers, we show that its thermal conductivity can be increased by more than 100% at room temperature in contrast to a free standing thin-film. The injection of phonons from the cladding silicon layers creates the observed enhancement in thermal conductivity. We study the key factors underlying the phonon injection mechanism and find that the surface conditions and layer thicknesses play a determining role. The findings presented here will allow for the creation of nanomaterials with an increased thermal conductivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789832 | PMC |
http://dx.doi.org/10.1038/s41598-018-20183-w | DOI Listing |
Membranes (Basel)
December 2024
LIME Laboratory, CNRS, MADIREL (UMR 7246), Campus St Jérôme, Aix Marseille University, 13013 Marseille, France.
Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Unit of Chemical Technologies, Technology Centre of Catalonia, Eurecat, 43007 Tarragona, Spain.
The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais-Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil.
Electrodialysis (ED) has already been applied to recover nickel in galvanizing processes, allowing nickel recovery and the production of a treated effluent with demineralized water quality. However, the growth in ED use is still limited by the production and commercialization of ion-selective membranes, currently limited to a few large companies. Therefore, this paper presents the development of homogeneous cationic and anionic membranes made from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for ED use.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
TiC provides a promising potential for high-temperature microwave absorbers due to its unique combination of thermal stability, high electrical conductivity, and robust structural integrity. C@TiC/SiO composites were successfully fabricated using a simple blending and cold-pressing method. The effects of C@TiC's absorbent content and temperature on the dielectric and microwave absorption properties of C@TiC/SiO composites were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!