Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge-lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature ([Formula: see text]93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale ([Formula: see text]6 pm to 11 pm) transverse displacements, suggesting that charge-lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative "incommensurate" order in hole-doped oxides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5816166PMC
http://dx.doi.org/10.1073/pnas.1714901115DOI Listing

Publication Analysis

Top Keywords

incommensurate charge
8
charge order
8
scanning transmission
8
transmission electron
8
electron microscopy
8
order hole-doped
8
hole-doped oxides
8
room temperature
8
wave vector
8
phase inhomogeneity
8

Similar Publications

For moiré bilayer TMD superlattices, full-configuration-interaction (FCI) calculations are presented that take into account both the intra-moiré-quantum-dot (MQD) charge-carrier Coulombic interactions, as well as the crystal-field effect from the surrounding moiré pockets (inter-moiré-QD interactions). The effective computational embedding strategy introduced here allows for an FCI methodogy that enables the complete interpretation of the counterintuitive experimental observations reported recently in the context of moiré TMD superlattices at integer fillings ν=2 and 4. Two novel states of matter are reported: (i) a genuinely quantum-mechanical supercrystal of sliding Wigner molecules (WMs) for unstrained moiré TMD materials (when the crystal field is commensurate with the trilobal symmetry of the confining potential in each embedded MQD) and (ii) a supercrystal of pinned Wigner molecules when the crystal field is incommensurate with the trilobal symmetry or straining of the whole material is involved.

View Article and Find Full Text PDF

Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.

View Article and Find Full Text PDF
Article Synopsis
  • High-temperature superconducting cuprates exhibit unique patterns of spin and charge orders that interact with superconductivity in complex ways.
  • Research using advanced quantum Monte Carlo simulations reveals that these patterns change differently depending on the material and temperature, particularly with varying charge transfer energy and doping levels.
  • The study concludes that charge modulations become less correlated with spin modulations as doping increases, aligning with experimental results, and suggests that high-temperature charge correlations differ from low-temperature stripe orders.
View Article and Find Full Text PDF

Tunable Mirror-Symmetric Type-III Ising Superconductivity in Atomically-Thin Natural Van der Waals Heterostructures.

Adv Mater

December 2024

School of Physics, and State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China.

Article Synopsis
  • Van der Waals (vdW) crystals with strong spin-orbit coupling are key for discovering unique 2D superconductors, where new pairing states arise from the combination of various factors like SOC and crystal structure.
  • The study highlights a mirror-symmetry protected Ising pairing state in a heterostructure of SnSe and TaSe, where the arrangement of the lattice helps minimize interference from certain pairing mechanisms.
  • The findings indicate that these vdW heterostructures can enhance the critical temperature under specific magnetic fields, which does not occur in other multilayer configurations due to a loss of mirror symmetry.
View Article and Find Full Text PDF

We show that when the Aubry transition occurs in incommensurately distorted structures, the amplitude of the distortions is not necessarily large as suggested by the standard Frenkel-Kontorova mechanical model. By modifying the shape of the potential in such a way that the mechanical force is locally stronger (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!