We present MethyMer, a Python-based tool aimed at selecting primers for amplification of complete CpG islands. These regions are difficult in terms of selecting appropriate primers because of their low-complexity, high GC content. Moreover, bisulfite treatment, in fact, leads to the reduction of the 4-letter alphabet (ATGC) to 3-letter one (ATG, except for methylated cytosines), and this also reduces region complexity and increases mispriming potential. MethyMer has a flexible scoring system, which optimizes the balance between various characteristics such as nucleotide composition, thermodynamic features (melting temperature, dimers [Formula: see text]G, etc.), the presence of CpG sites and polyN tracts, and primer specificity, which is assessed with aligning primers to the bisulfite-treated genome using bowtie (up to three mismatches are allowed). Users are able to customize desired or limit ranges of various parameters as well as penalties for non-desired values. Moreover, MethyMer allows picking up the optimal combination of PCR primer pairs to perform the amplification of a large genomic locus, e.g. CpG island or other hard-to-study region, with minimal overlap of the individual amplicons. MethyMer incorporates ENCODE genome annotation records (promoter/enhancer/insulator), The Cancer Genome Atlas (TCGA) CpG methylation data derived with Illumina Infinium 450K microarrays, and records on correlations between TCGA RNA-Seq and CpG methylation data for 20 cancer types. These databases are included in the MethyMer release. Our tool is available at https://sourceforge.net/projects/methymer/ .

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0219720018400048DOI Listing

Publication Analysis

Top Keywords

complete cpg
8
cpg islands
8
cpg methylation
8
methylation data
8
methymer
6
cpg
6
methymer design
4
design combinations
4
combinations specific
4
primers
4

Similar Publications

Atrial remodeling is a major pathophysiological mechanism of atrial fibrillation (AF). Atrial remodeling progresses with aging and background diseases, including hypertension, heart failure, and AF itself. However, its mechanism of action and reversibility have not been completely elucidated.

View Article and Find Full Text PDF

Endovascular versus Best Medical Treatment for Acute Carotid Occlusion BelOw Circle of Willis (ACOBOW): The ACOBOW Study.

Radiology

January 2025

From the Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany (L.M., G.B., P.S., J.F., C.P.S.); Dept of Diagnostic and Interventional Neuroradiology, Hosp Bremen-Mitte, Bremen, Germany (M.A., P.P.); Interventional Neuroradiology Section, Dept of Radiology, Donostia Univ Hosp, Donostia-San Sebastián, Spain (Á.L., J.Á.L.); Clinic for Radiology, Section for Interventional Radiology, Univ of Münster and Univ Hosp Münster, Münster, Germany (W.S., H.K., C.P.S.); Dept of Neuroradiology, Westpfalz-Klinikum, Kaiserslautern, Germany (W.N.); Dept of Neuroradiology, Otto-von-Guericke-Universitätsklinikum Magdeburg, Magdeburg, Germany (D.B., M.T.); Inst for Diagnostic and Interventional Radiology and Neuroradiology, Univ Hosp Essen, Essen, Germany (H.S., C.D.); Dept of Neuroradiology, Univ of Cologne, Cologne, Germany (C.K., C.Z.); Dept of Neuroradiology, Univ Hosp Aachen, Aachen, Germany (C.W., M. Möhlenbruch); Dept of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical Univ Munich, Munich, Germany (M.R.H.P., C.M.); Inst of Neuroradiology, Univ Hosps, LMU Munich, Munich, Germany (H.Z.); Dept of Diagnostic and Interventional Neuroradiology, Univ Medical Ctr Goettingen, Goettingen, Germany (M. Ernst, A.J.); Interventional Neuroradiology, Dept of Radiology, Hosp Clínico San Carlos, Madrid, Spain (M.M.G., C.P.G.); Dept of Neuroradiology, Hosp Universitario La Paz, Madrid, Spain (P.N., A.F.P.); Div of Neurology, Dept of Medicine (L.Y., B.T.), and Div of Interventional Radiology, Dept of Diagnostic Imaging (A.G.), National Univ Health System, Singapore; Yong Loo Lin School of Medicine, National Univ of Singapore, Singapore (L.Y., B.T., A.G.); Inst of Neuroradiology, Charité Universitätsmedizin Berlin, Berlin, Germany (E.S., M. Miszczuk); Dept of Neuroradiology, Clinic and Policlinic of Radiology, Univ Hosp Halle/Saale, Halle, Germany (S.S.); Dept of Radiology and Neuroradiology, Stadtspital Zürich, Zürich, Switzerland (P.S.); Dept of Diagnostic and Interventional Neuroradiology, Univ Hosp Basel, Basel, Switzerland (P.S., M.P.); Depts of Interventional Neuroradiology (J.Z.P.) and Neurology (G.P.), Hosp Clínico Universitario Virgen de la Arrixaca, Murcia, Spain; Dept of Neuroradiology, Karolinska Univ Hosp and Dept of Clinical Neuroscience, Karolinska Inst, Stockholm, Sweden (F.A., T.A.); Dept of Medical Imaging, AZ Groeninge, Kortrijk, Belgium (T.A.); Dept of Radiology, Comenius Univ's Jessenius Faculty of Medicine and Univ Hosp, Martin, Slovakia (K.Z.); Dept of Radiology, Aretaieion Univ Hosp, National and Kapodistrian Univ of Athens, Athens, Greece (P.P.); Dept of Neuroradiology, Univ Hosp Marburg, Marburg, Germany (A.K.); Dept of Neuroradiology, Univ Hosp of Bonn, Bonn, Germany (F.D.); and Dept of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany (M. Elsharkawy).

Background Symptomatic acute occlusions of the internal carotid artery (ICA) below the circle of Willis can cause a variety of stroke symptoms, even if the major intracranial cerebral arteries remain patent; however, outcome and safety data are limited. Purpose To compare treatment effects and procedural safety of endovascular treatment (EVT) and best medical treatment (BMT) in patients with symptomatic acute occlusions of the ICA below the circle of Willis. Materials and Methods This retrospective, multicenter cohort study from 22 comprehensive stroke centers in Europe and Asia includes patients treated between January 1, 2008, and December 31, 2022.

View Article and Find Full Text PDF

The US Department of Veterans Affairs (VA) and Department of Defense (DOD) Work Group revised the 2013 VA/DOD Clinical Practice Guideline (CPG) for the Management of Bipolar Disorder (BD). This paper reviews the 2023 CPG and its development process, including how recommendations were made for evidence-based treatment in BD. Subject experts and key stakeholders developed 20 key questions and reviewed the published literature after a systematic search using the PICOTS (population, intervention, comparator, outcomes, timing of outcomes measurement, and setting) method.

View Article and Find Full Text PDF

Purpose: To compare the color alteration, surface roughness and microhardness and cross-sectional microhardness of bovine enamel treated with at-home whitening strips and gels.

Materials And Methods: Sixty-six pigmented specimens (n = 11) were allocated to six groups: C-cotton wool moistened with distilled water for 1 h; SDS-sodium dithionite strip, for 1 h; HPS-6.5% hydrogen peroxide strip, for 1 h; CPS-20% carbamide peroxide strip, for 1 h; HPG-7.

View Article and Find Full Text PDF

Background: The development of evidence-based practitioners is an expectation of entry-level physical therapist education. Knowledge translation is a process to enhance the uptake of evidence into clinical practice. Student run pro bono clinics provide an authentic learning environment in which knowledge translation activities can be used to implement clinical practice guidelines (CPGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!