Changes in environmental stress impact on secondary metabolite (SM) production profiles. Few studies have examined targeted SM production patterns in relation to interacting environmental conditions in stored cereals. The objectives were to examine the effect of water activity (a; 0.95-0.90) x temperature (10-25 °C) on SM production on naturally contaminated stored wheat and that inoculated with Samples were analysed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) on (a) total number of known SMs, (b) their concentrations and (c) changes under environmental stress. 24 metabolites were quantified. Interestingly, statistical differences (ChisSq., < 0.001) were observed in the number of SMs produced under different sets of interacting environmental conditions. The dominant metabolites in natural stored grain were deoxynivalenol (DON) and nivalenol (NIV) followed by a range of enniatins (A, A1, B, B1), apicidin and DON-3-glucoside at 10 °C. Increasing temperature promoted the biosynthesis of other SMs such as aurofusarin, moniliformin, zearalenone (ZEN) and their derivatives. Natural wheat + inoculation resulted in a significant increase in the number of metabolites produced (ChisSq., < 0.001). For ZEN and its derivatives, more was produced under cooler storage conditions. Fusarin C was enhanced in contrast to that for the enniatin group. The relative ratios of certain groups of targeted SM changed with environmental stress. Both temperature and a affected the amounts of metabolites present, especially of DON and ZEN. This study suggests that the dominant SMs produced in stored temperate cereals are the mycotoxins for which legislation exists. However, there are changes in the ratios of key metabolites which could influence the relative contamination with individual compounds. Thus, in the future, under more extreme environmental stresses, different dominant SMs may be formed which could make present legislation out of step with the future contamination which might occur.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848157PMC
http://dx.doi.org/10.3390/toxins10020056DOI Listing

Publication Analysis

Top Keywords

environmental stress
16
interacting environmental
12
natural wheat
8
wheat inoculated
8
changes environmental
8
environmental conditions
8
number sms
8
chissq 0001
8
sms produced
8
zen derivatives
8

Similar Publications

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.

View Article and Find Full Text PDF

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!