Objective: This study was carried out to investigate the possible application of Broussonetia papyrifera (B. papyrifera) silage as a functional feeding stuff in dairy cattle.
Methods: Seventy-two Holstein cows were divided into four groups randomly and allocated to 6 pens with 3 individuals in each group and fed the original total mixed ratio (TMR) in the dairy farm or the new TMR with 5%, 10%, and 15% B. papyrifera silage, separately. Feed intake were recorded, milk and blood samples were collected, and milk composition, blood metabolites and milk fatty acids composition were measure at the end of the experiment.
Results: Dry matter intake of cows decreased when they fed on diet with B. papyrifera, but no differences were observed in body condition score, milk yield, milk protein and lactose, feed efficiency and serum metabolites between groups. Both 10% or 15% of B. papyrifera silage in the diet significantly increased the immunoglobulin A (IgA) and IgG in serum, 15% of B. papyrifera silage increased the content of serum catalase, superoxide dismutase, total antioxidant capacity, and decreased the content of 8-hydroxy-2'-deoxyguanosine. Furthermore, 10% or 15% of B. papyrifera silage resulted in a significant decrease in the milk somatic cell count, and increased the polyunsaturated fatty acids content in the milk.
Conclusion: The diets with 10% to 15% of B. papyrifera silage might enhance the immune and antioxidant function of dairy cows and increase the polyunstaturated fatty acid concentration in the milk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043428 | PMC |
http://dx.doi.org/10.5713/ajas.17.0847 | DOI Listing |
Animals (Basel)
January 2025
College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
Numerous studies have demonstrated that is an unconventional feed resource with significant developmental potential. This research aimed to explore the effects of silage on the growth performance, blood parameters, immunity, antioxidation, cytokine levels, and rumen bacterial composition of Kazakh lamb. Forty healthy male Kazakh lambs, aged 5 months and weighing 30.
View Article and Find Full Text PDFFront Microbiol
December 2024
School of Biological Science and Technology, University of Jinan, Jinan, China.
Paper mulberry () is a high-quality silage protein feed material that can help address feed shortages and support livestock development. Although some studies have investigated the relationships between microbial communities and silage quality, these relationships and the underlying community assembly processes remain complex, requiring further research to clarify them. Additionally, limited research has explored the relationship between microbial community fermentation functions and silage quality.
View Article and Find Full Text PDFJ Sci Food Agric
April 2024
College of Animal Science, Guizhou University, Guizhou, China.
Background: The high fibre content of whole plants of Broussonetia papyrifera limits its efficient utilization. Ferulic acid esterase (FAE), in combination with xylanase, can effectively cleave the lignin-carbohydrate complex, promoting the function of cellulase. However, little is known about the impact of these additives on silage.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2023
College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
Paper mulberry (Broussonetia papyrifera), as a new woody forage with high-protein characteristic, is being widely used in ruminant feeding. However, little is known about the comprehensive microbiota picture of whole ruminal niches (liquid, solid, and epithelium) under paper mulberry diet. To gain a better understanding of feeding paper mulberry on the rumen microbiota, the effects of fresh paper mulberry, paper mulberry silage, or a conventional high-protein alfalfa silage on rumen fermentation products and microbiota in rumen niches of Hu lambs were studied.
View Article and Find Full Text PDFLett Appl Microbiol
April 2023
College of Animal Science, Guizhou University, Guiyang 550025, China.
In this research, we evaluated the effect of exogenous lactic acid bacteria and Amomum villosum essential oil (AVEO) on the chemical composition, microbial community composition, microbial functional diversity, and fermentation quality of Broussonetia papyrifera (BP) and Pennisetum sinese (PS) mixed silages. The BP:PS mixing ratios were 100:0, 70:30, 50:50, 30:70, and 0:100. After 3 and 30 days of ensiling at 22°C-25°C, microbial diversity and function, and fermentation quality, were assessed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!