Host cell proteins (HCPs) are endogenous impurities, and their proteolytic and binding properties can compromise the integrity, and, hence, the stability and efficacy of recombinant therapeutic proteins such as monoclonal antibodies (mAbs). Nonetheless, purification of mAbs currently presents a challenge because they often co-elute with certain HCP species during the capture step of protein A affinity chromatography. A Quality-by-Design (QbD) strategy to overcome this challenge involves identifying residual HCPs and tracing their source to the harvested cell culture fluid (HCCF) and the corresponding cell culture operating parameters. Then, problematic HCPs in HCCF may be reduced by cell engineering or culture process optimization. Here, we present experimental results linking cell culture temperature and post-protein A residual HCP profile. We had previously reported that Chinese hamster ovary cell cultures conducted at standard physiological temperature and with a shift to mild hypothermia on day 5 produced HCCF of comparable product titer and HCP concentration, but with considerably different HCP composition. In this study, we show that differences in HCP variety at harvest cascaded to downstream purification where different residual HCPs were present in the two sets of samples post-protein A purification. To detect low-abundant residual HCPs, we designed a looping liquid chromatography-mass spectrometry method with continuous expansion of a preferred, exclude, and targeted peptide list. Mild hypothermic cultures produced 20% more residual HCP species, especially cell membrane proteins, distinct from the control. Critically, we identified that half of the potentially immunogenic residual HCP species were different between the two sets of samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5916555 | PMC |
http://dx.doi.org/10.1080/19420862.2018.1433977 | DOI Listing |
Environ Res
January 2025
Faculty of Chemistry, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
Development of new adsorbents for the efficient removal of organic pollutants from water is one of the most emerging environmental issues. Current studies in this field focus on improving the adsorption capacity of various materials and/or broadening the pH range in which the adsorbents can efficiently remove target pollutants. In this study, we designed bifunctional hyper-cross-linked polymers (HCPs) containing both carbonyl and amine species to investigate the effect of amine functional groups on the efficiency of adsorptive removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
University of Delaware, Department of Chemical and Biomolecular Engineering, Newark, DE 19713, USA.
To better understand host cell protein (HCP) retention in adeno-associated virus (AAV) downstream processes, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) was used to quantitatively profile residual HCPs for four AAV serotypes (AAV2, -5, -8, and -9) produced with HEK293 cells and purified using POROS CaptureSelect AAVX affinity chromatography. A broad range of residual HCPs were detected in affinity eluates after purification ( = 2,746), and HCP profiles showed universally present species ( = 1,117) and species unique to one or more AAV serotype. SWATH-MS revealed that HCP persistence was dominated by high-abundance conserved species (HACS), which appeared across all serotype conditions studied.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
Despite the extensive studies on the adsorption and activation of hydrogen over metal oxides, it remains a challenge to investigate the structure-dependent activation of hydrogen and its selectivity mechanism in hydrogenation reactions. Herein we take spinel and solid solution MnGaO with a similar bulk chemical composition and study the hydrogen activation mechanism and reactivity in syngas conversion. The results show that MnGaO-Solid Solution (MnGaO-SS) is a typical Mn-doped hexagonal close-packed (HCP) GaO with a Ga-rich surface.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China.
Constructing metastable phase structure plays an important role in changing the physicochemical properties and improving the catalytic performance of nanocrystals. Unfortunately, the synthesis of metastable phase metallic nanocrystals is highly challenging, mainly due to the thermodynamically unstable ground-state. Here, we report a synthesis of unconventional metastable hexagonal rhodium nanocrystal (B-Rh/C) via interstitial boron insertion.
View Article and Find Full Text PDFSmall
October 2024
Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Herein, a straightforward approach using pulsed laser technology to synthesize selective hexagonal-close-packed (hcp) Ru nanoparticles attached to Cu nanospheres (Ru/Cu) as bifunctional electrocatalyst for catalyzing the hydrogen evolution reaction (HER) and formaldehyde oxidation reaction (FOR) are reported. Initially, Ru-doped CuO flakes are synthesized using a coprecipitation method followed by transformation into Ru/Cu composites through a strategy involving pulsed laser irradiation in liquid. Specifically, the optimized Ru/Cu-4 composite not only demonstrates a low overpotential of 182 mV at 10 mA·cm for the HER but also an ultralow working potential of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!