The importance of locomotion to evolutionary fitness has led to extensive study of primate locomotor behavior, morphology and ecology. Most previous research has focused on adult primates, but in the last few decades, increased attention to locomotor development has provided new insights toward our broader understanding of primate adaptation and evolution. Here, we review the contributions of this body of work from three basic perspectives. First, we assess possible determinants on the timing of locomotor independence, an important life history event. Significant influences on timing of locomotor independence include adult female body mass, age at weaning, and especially relative brain size, a significant predictor of other primate life history variables. Additionally, we found significant phylogenetic differences in the timing of locomotor independence, even accounting for these influences. Second, we discuss how structural aspects of primate growth may enhance the locomotor performance and safety of young primates, despite their inherent neuromotor and musculoskeletal limitations. For example, compared to adults, growing primates have greater muscle mechanical advantage, greater bone robusticity, and larger extremities with relatively long digits. Third, focusing on primate quadrupedalism, we provide examples that illustrate how ontogenetic transitions in morphology and locomotion can serve as a model system for testing broader principles underlying primate locomotor biomechanics. This approach has led to a better understanding of the key features that contribute to primates' stride characteristics, gait patterns, limb force distribution, and limb postures. We have learned a great deal from the study of locomotor ontogeny, but there is much left to explore. We conclude by offering guidelines for future research, both in the laboratory and the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajpa.23388 | DOI Listing |
Background: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.
View Article and Find Full Text PDFJ Strength Cond Res
February 2025
MilanLab Research Department, A.C. Milan S.p.A., Milan, Italy.
Riboli, A, Nardi, F, Osti, M, Cefis, M, Tesoro, G, and Mazzoni, S. Training load, official match locomotor demand, and their association in top-class soccer players during a full competitive season. J Strength Cond Res 39(2): 249-259, 2025-To examine training load and official match locomotor demands of top-class soccer players during a full competitive season and to evaluate their association.
View Article and Find Full Text PDFBiomolecules
January 2025
Qingdao Key Laboratory of Neurorehabilitation, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by the progressive degeneration of midbrain dopaminergic neurons and resultant locomotor dysfunction. Despite over two centuries of recognition as a chronic disease, the exact pathogenesis of PD remains elusive. The onset and progression of PD involve multiple complex pathological processes, with dysfunctional autophagy and elevated oxidative stress serving as critical contributors.
View Article and Find Full Text PDFF1000Res
January 2025
German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany.
Background: Muscarinic receptor agonism and positive allosteric modulation is a promising mechanism of action for treating psychosis, not present in most D2R-blocking antipsychotics. Xanomeline, an M1/M4-preferring agonist, has shown efficacy in late-stage clinical trials, with more compounds being investigated. Therefore, we aim to synthesize evidence on the preclinical efficacy of muscarinic receptor agonists and positive allosteric modulators in animal models of psychosis to provide unique insights and evidence-based information to guide drug development.
View Article and Find Full Text PDFJ Rehabil Med
January 2025
Centre for Interdisciplinary Rehabilitation Research of Greater Montreal (CRIR) - Centre Intégré Universitaire de Santé et de Services Sociaux du Centre-Sud-de-l'Île-de-Montréal, Montréal, Québec, Canada; School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
Objective: To determine the strength of the association between residual limb neuropathic pain intensity and the number of neuromas, prosthetic, functional, and participation outcomes, and assess whether ultrasound (US) biomarkers of neuromas differ between pain intensities.
Design: Cross-sectional study.
Subjects: Twenty-two participants with a transtibial amputation for more than 12 months, with and without residual limb neuropathic pain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!