Ab initio all-electron computations have been carried out for Ce and CeF, including the electron correlation, scalar relativistic, and spin-orbit coupling effects in a quantitative manner. First, the n-electron valence state second-order multireference perturbation theory (NEVPT2) and spin-orbit configuration interaction (SOCI) based on the state-averaged restricted active space multiconfigurational self-consistent field (SA-RASSCF) and state-averaged complete active space multiconfigurational self-consistent field (SA-CASSCF) wavefunctions have been applied to evaluations of the low-lying energy levels of Ce with [Xe]4f 5d 6s and [Xe]4f 5d configurations, to test the accuracy of several all-electron relativistic basis sets. It is shown that the mixing of quartet and doublet states is essential to reproduce the excitation energies. Then, SA-RASSCF(CASSCF)/NEVPT2 + SOCI computations with the Sapporo(-DKH3)-2012-QZP basis set were carried out to determine the energy levels of the low-lying electronic states of CeF. The calculated excitation energies, bond length, and vibrational frequency are shown to be in good agreement with the available experimental data. © 2018 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.25171DOI Listing

Publication Analysis

Top Keywords

all-electron relativistic
8
low-lying electronic
8
electronic states
8
bond length
8
length vibrational
8
vibrational frequency
8
spin-orbit coupling
8
coupling effects
8
active space
8
space multiconfigurational
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!