Identification of the hot spot residues for pyridine derivative inhibitor CCT251455 and ATP substrate binding on monopolar spindle 1 (MPS1) kinase by molecular dynamic simulation.

J Biomol Struct Dyn

a Collaborative Innovation Center of Chemistry for Life Sciences, Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Sciences and Technology of China, Hefei , 230027 , P. R. China.

Published: February 2019

Protein kinase monopolar spindle 1 plays an important role in spindle assembly checkpoint at the onset of mitosis. Over expression of MPS1 correlated with a wide range of human tumors makes it an attractive target for finding an effective and specific inhibitor. In this work, we performed molecular dynamics simulations of protein MPS1 itself as well as protein bound systems with the inhibitor and natural substrate based on crystal structures. The reported orally bioavailable 1 h-pyrrolo [3,2-c] pyridine inhibitors of MPS1 maintained stable binding in the catalytic site, while natural substrate ATP could not stay. Comparative study of stability and flexibility of three systems reveals position shifting of β-sheet region within the catalytic site, which indicates inhibition mechanism was through stabilizing the β-sheet region. Binding free energies calculated with MM-GB/PBSA method shows different binding affinity for inhibitor and ATP. Finally, interactions between protein and inhibitor during molecular dynamic simulations were measured and counted. Residue Gly605 and Leu654 were suggested as important hot spots for stable binding of inhibitor by molecular dynamic simulation. Our results reveal an important position shifting within catalytic site for non-inhibited proteins. Together with hot spots found by molecular dynamic simulation, the results provide important information of inhibition mechanism and will be referenced for designing novel inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2018.1433552DOI Listing

Publication Analysis

Top Keywords

molecular dynamic
16
dynamic simulation
12
catalytic site
12
monopolar spindle
8
natural substrate
8
stable binding
8
position shifting
8
β-sheet region
8
inhibition mechanism
8
inhibitor molecular
8

Similar Publications

Background: Neoadjuvant chemotherapy (NACT) is the standard-of-care treatment for patients with locally advanced breast cancer (LABC), providing crucial benefits in tumor downstaging. Clinical parameters, such as molecular subtypes, influence the therapeutic impact of NACT. Moreover, severe adverse events delay the treatment process and reduce the effectiveness of therapy.

View Article and Find Full Text PDF

The proliferation-specific oncogenic transcription factor, FOXM1 is overexpressed in primary and recurrent breast tumors across all breast cancer (BC) subtypes. Intriguingly, FOXM1 overexpression was found to be highest in Triple-negative breast cancer (TNBC), the most aggressive BC with the worst prognosis. However, FOXM1-mediated TNBC pathogenesis is not completely elucidated.

View Article and Find Full Text PDF

Rocky Mountain Spotted Fever, caused by the gram-negative intracellular bacteria Rickettsia rickettsii, is a serious tick-borne infection with a fatality rate of 20-30%, if not treated. Since it is the most serious rickettsial disease in North America, modified prevention and treatment strategies are of critical importance. In order to find new therapeutic targets and create multiepitope vaccines, this study integrated subtractive proteomics with reverse vaccinology.

View Article and Find Full Text PDF

Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods.

View Article and Find Full Text PDF

Computational insights into the aggregation mechanism of human calcitonin.

Int J Biol Macromol

January 2025

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States. Electronic address:

Human calcitonin (hCT) is a peptide hormone that regulates calcium homeostasis, but its abnormal aggregation can disrupt physiological functions and increase the risk of medullary thyroid carcinoma. To elucidate the mechanisms underlying hCT aggregation, we investigated the self-assembly dynamics of hCT segments (hCT, hCT, and hCT) and the folding and dimerization of full-length hCT through microsecond atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that hCT and hCT predominantly existed as isolated monomers with transient small-sized oligomers, indicating weak aggregation tendencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!