Introduction: Apart from many positive changes associated with technical civilization, there are also - from the health point of view - some threats. The reduction in the level of physical activity is one of them. The aim of the study was to investigate whether there are any relationships between children's physical activity and behaviors, and to assess the impact of the adults' activity on their children's habits.

Material And Methods: The study involved a group of 340 children aged 7-12 years (mean age: 9.81 ±1.7) and their parents. In order to evaluate children's physical activity and the amount of time that they spend with electronic devices, an original questionnaire and the IPAQ questionnaire were used.

Results: Children usually use electronic devices between 2 and 7 days per week (mean: 4.74 ±0.86), regardless of sex ( > 0.09) and spend between 5 and 1620 min per week (mean: 459.46 ±308.1) with their mobile phone, tablet, PCs and TVs. 67.92% of boys and 69.61% of girls lead an active lifestyle. The children's activity level depends on their parents' level of activity ( < 0.000001). Parents of semi-active children lead a lifestyle with a moderate level of physical activity.

Conclusions: The level of physical activity in younger children depends on the children's relationship with their parents and their level of activity. Children spend a lot of free time with their electronic devices. It is necessary to develop and implement activities intended to raise awareness of children and their families about the effects of hypokinesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778431PMC
http://dx.doi.org/10.5114/aoms.2018.72242DOI Listing

Publication Analysis

Top Keywords

electronic devices
16
physical activity
16
level physical
12
activity
9
activity level
8
children's physical
8
level activity
8
children's
6
level
6
children
6

Similar Publications

Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.

View Article and Find Full Text PDF

Background: Despite the increasing popularity of electronic devices, the longitudinal effects of daily prolonged electronic device usage on brain health and the aging process remain unclear.

Objective: The aim of this study was to investigate the impact of the daily use of mobile phones/computers on the brain structure and the risk of neurodegenerative diseases.

Methods: We used data from the UK Biobank, a longitudinal population-based cohort study, to analyze the impact of mobile phone use duration, weekly usage time, and playing computer games on the future brain structure and the future risk of various neurodegenerative diseases, including all-cause dementia (ACD), Alzheimer disease (AD), vascular dementia (VD), all-cause parkinsonism (ACP), and Parkinson disease (PD).

View Article and Find Full Text PDF

UV-Resistant Nanostructured Anti-reflective Film for Achieving Efficiency Enhancement of Perovskite Solar Cells and Potential of Fabricating Large-Scale Cu(In, Ga)Se Solar Cells.

ACS Appl Mater Interfaces

January 2025

Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China.

Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs.

View Article and Find Full Text PDF

Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.

View Article and Find Full Text PDF

Observations of Cherenkov-Like Radial Wake in Water Waves.

Adv Sci (Weinh)

January 2025

Key Laboratory of Ocean Observation‑Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Hangzhou, 310058, China.

Cherenkov radiation (CR) is a fascinating phenomenon that occurs not only in electromagnetic (EM) waves but also in water waves. The V-shaped wake formed by a moving object on the water surface results from the constructive interference of water waves of different wavelengths, similar to CR. We designed and fabricated a one-dimensional (1D) water wave crystal to analogize the behavior of moving particles in water waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!