The antimicrobial peptide human β-defensin 1 (hBD1) is continuously produced by epithelial cells in many tissues. Compared to other defensins, hBD1 has only minor antibiotic activity in its native state. After reduction of its disulfide bridges, however, it becomes a potent antimicrobial agent against bacteria, while the oxidized native form (hBD1ox) shows specific activity against Gram-negative bacteria. We show that the killing mechanism of hBD1ox depends on aerobic growth conditions and bacterial enzymes. We analyzed the different activities of hBD1 using mutants of lacking one or more specific proteins of their outer membrane, cytosol, or redox systems. We discovered that DsbA and DsbB are essential for the antimicrobial activity of hBD1ox but not for that of reduced hBD1 (hBD1red). Furthermore, our results strongly suggest that hBD1ox uses outer membrane protein FepA to penetrate the bacterial periplasm space. In contrast, other bacterial proteins in the outer membrane and cytosol did not modify the antimicrobial activity. Using immunogold labeling, we identified the localization of hBD1ox in the periplasmic space and partly in the outer membrane of However, in resistant mutants lacking DsbA and DsbB, hBD1ox was detected mainly in the bacterial cytosol. In summary, we discovered that hBD1ox could use FepA to enter the periplasmic space, where its activity depends on presence of DsbA and DsbB. HBD1ox concentrates in the periplasm in Gram-negative bacteria, which finally leads to bleb formation and death of the bacteria. Thus, the bacterial redox system plays an essential role in mechanisms of resistance against host-derived peptides such as hBD1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865016 | PMC |
http://dx.doi.org/10.1128/IAI.00875-17 | DOI Listing |
Langmuir
January 2025
Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.
Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China. Electronic address:
Conjugative transfer, a pivotal mechanism in the transmission of antimicrobial resistance genes, is susceptible to various environmental pollutants. As an emerging contaminant, lithium (Li) has garnered much attention due to its extensive applications. This research investigated the effects of Li on conjugative transfer process, examining biochemical and omics perspectives.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada.
The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.
View Article and Find Full Text PDFJ Glaucoma
January 2025
Department of Ophthalmology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Universidad Complutense. Madrid, Spain.
Prcis: The discriminant function of glaucoma, obtained by the Laguna ONhE colorimetric program, significantly correlates with the BMO-MRW. Furthermore, the diagnostic capacity was inferior to other structural tests in POAG patients.
Purpose: To evaluate the diagnostic capability for glaucoma and the correlation between peripapillary and macular parameters using spectral domain optical coherence tomography (SD-OCT) and optic nerve head hemoglobin (OHN Hb) levels assessed by the Laguna ONhE® software using colorimetric analysis.
Langmuir
January 2025
John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.
Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!