Background: A hemiplegic stroke survivor with a moderate to severe gait disturbance may have difficulty walking using a one-arm walker. This study aimed to test the safety and feasibility of a prototype one-arm motorized walker that uses a power-driven device to provide gait assistance to hemiplegic stroke survivors with moderate to severe gait disturbances.
Methods: A one-arm motorized walker with a power-driven device was developed and tested with respect to 10 distinct variables, including weight, degrees of freedom, handle, handle substitution function, two-sided use function, variable handle height, redirecting function, electric moving parts through the handle control, brake function using the handle control, folding chairs, and design stability. Its safety and feasibility were tested in 19 hemiplegic stroke individuals using the Likert scale and a simple interview.
Results: The walker consists of a frame platform including a handle, electric motor for driving, one wheel for driving, two wheels for turning, unlocking sensor, driving button, and turning buttons. The walker is programmed so that a touch sensor in the handle can unlock the locking system. Furthermore, it is programmed so that a user can propel it by pushing the handle downward or pressing a button and can control directions for turning right or left by pressing buttons. Safety and performance testing was achieved for 10 separate variables, and a Likert scale score of 3.5 of 5 was recorded.
Conclusion: This walker's novel design was developed for hemiplegic stroke survivors with moderate to severe gait disturbances. Our findings indicate that the walker is both safe and feasible for providing walking assistance to hemiplegic stroke survivors and establish the potential advantages of the one-arm motorized walker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789543 | PMC |
http://dx.doi.org/10.1186/s12938-018-0446-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!