The histone demethylase Jmjd3 regulates zebrafish myeloid development by promoting spi1 expression.

Biochim Biophys Acta Gene Regul Mech

State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China; Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.

Published: February 2018

The histone demethylase Jmjd3 plays a critical role in cell lineage specification and differentiation at various stages of development. However, its function during normal myeloid development remains poorly understood. Here, we carried out a systematic in vivo screen of epigenetic factors for their function in hematopoiesis and identified Jmjd3 as a new epigenetic factor that regulates myelopoiesis in zebrafish. We demonstrated that jmjd3 was essential for zebrafish primitive and definitive myelopoiesis, knockdown of jmjd3 suppressed the myeloid commitment and enhanced the erythroid commitment. Only overexpression of spi1 but not the other myeloid regulators rescued the myeloid development in jmjd3 morphants. Furthermore, preliminary mechanistic studies demonstrated that Jmjd3 could directly bind to the spi1 regulatory region to alleviate the repressive H3K27me3 modification and activate spi1 expression. Thus, our studies highlight that Jmjd3 is indispensable for early zebrafish myeloid development by promoting spi1 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972518PMC
http://dx.doi.org/10.1016/j.bbagrm.2017.12.009DOI Listing

Publication Analysis

Top Keywords

myeloid development
16
spi1 expression
12
histone demethylase
8
jmjd3
8
demethylase jmjd3
8
zebrafish myeloid
8
development promoting
8
promoting spi1
8
demonstrated jmjd3
8
myeloid
6

Similar Publications

Dynamics of immune responses following duck Tembusu virus infection in adult laying ducks reveal the effect of age-related immune variation on disease severity.

Poult Sci

December 2024

Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals (CUEIDAs), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence in Animal Vector-Borne Diseases, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand, 10330; Center of Excellence of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 10330. Electronic address:

Duck Tembusu virus (DTMUV), an emerging avian pathogenic flavivirus, is notably associated with neurological disorders and acute egg drop syndrome in ducks. We previously demonstrated that the susceptibility of ducks to DTMUV infection varies significantly with age, with younger ducks (4-week-old) exhibiting more severe disease than older ducks (27-week-old). However, the immunological mechanisms underlying these age-related differences in disease severity remain unclear.

View Article and Find Full Text PDF

Background: Atherosclerosis, a leading cause of cardiovascular disease, is characterized by intricate interactions among lipid metabolism, inflammation, and immune response. Investigating immune-related genetic factors and immune cell infiltration in atherosclerotic tissues may provide insights into potential therapeutic targets.

Methods: We analyzed transcriptomic data from atherosclerotic and normal tissues to identify differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Introduction: The triggering receptor expressed on myeloid cells 2 (TREM2) arginine-47-histidine (R47H) mutation is a significant risk for Alzheimer's disease (AD) with unclear mechanisms. Previous studies focused on microglial amyloid-β (Aβ) phagocytosis with less attention on the impact of TREM2 mutation on blood monocytes.

Methods: Bone marrow transplantation (BMT) models were used to assess the contribution of blood monocytes carrying TREM2 mutation to AD.

View Article and Find Full Text PDF

Immune Cell Profiling Reveals a Common Pattern in Premetastatic Niche Formation Across Various Cancer Types.

Cancer Med

January 2025

Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Background: Metastasis is the major cause of cancer-related mortality. The premetastatic niche is a promising target for its prevention. However, the generality and cellular dynamics in premetastatic niche formation have remained unclear.

View Article and Find Full Text PDF

A previously healthy 32-year-old male patient was admitted to hospital with malaise, dyspnea, anemia, thrombocytopenia, and leukopenia. Anemia and thrombocytopenia worsened during the third week. Considering the possible need for transfusion, routine ABO and D typing and an antibody detection test were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!