Seriously damaged molars can be replaced by autotransplantation with the help of 3D techniques. In the present case, involving an 18-year old patient, 18, 38 and 48 were used to replace, respectively, 14, 36 and 37. Preoperatively, the width of the crowns and the root development of 18, 38 and 48 were analysed using 3D imaging. During the autotransplantation procedure, the new alveoli are formed with the help of replicas of the donor molars printed in 3D, in order to prevent iatrogenic damage to the actual donor molars.. The extra-alveolar time was less than 2 minutes for all donor molars. Postoperative follow-up showed physiologic integration of the transplanted molars. There was no ankylosis. Autotransplantation with the help of 3D techniques makes it possible to perform complex procedures with good results.

Download full-text PDF

Source
http://dx.doi.org/10.5177/ntvt.2018.01.17186DOI Listing

Publication Analysis

Top Keywords

donor molars
12
damaged molars
8
autotransplantation help
8
help techniques
8
molars
6
[replacing heavily
4
heavily damaged
4
molars 3d-techniques]
4
3d-techniques] seriously
4
seriously damaged
4

Similar Publications

Molecularly manipulating pyrazinoquinoxaline derivatives to construct NIR-II AIEgens for multimodal phototheranostics of breast cancer bone metastases.

Biomaterials

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China. Electronic address:

Multimodal phototheranostics on the basis of single molecular species shows inexhaustible and vigorous vitality, particularly those emit fluorescence in the second near-infrared window (NIR-II), the construction of such exceptional molecules nonetheless retains formidably challenging. In view of the undiversified molecular skeletons and insufficient phototheranostic outputs of previously reported NIR-II fluorophores, herein, electron acceptor engineering based on heteroatom-inserted rigid-planar pyrazinoquinoxaline was manipulated to fabricate aggregation-induced emission (AIE)-featured NIR-II counterparts with donor-acceptor-donor (D-A-D) architecture. Systematical investigations substantiated that one of those synthesized AIE molecules, namely 4TPQ, incorporating a fused thiophene acceptor, synchronously exhibited high molar absorptivity (ε), NIR-II emission, typical AIE tendency, significant reactive oxygen species (ROS) generation, and high photothermal conversion efficiency.

View Article and Find Full Text PDF

Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.

View Article and Find Full Text PDF

Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics.

J Am Chem Soc

January 2025

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.

View Article and Find Full Text PDF

The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.

View Article and Find Full Text PDF

Efficacy of root canal treatment for autotransplanted third molars: a 6-Year cohort study of 167 teeth in southern China.

PeerJ

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background: Autogenous tooth transplantation offers significant advantages and promising success rates for replacing non-retainable teeth. This study aimed to investigate the prognostic factors, especially the impact of root canal treatment (RCT), of autotransplanted teeth in an up-to-6-year follow-up cohort of 167 teeth in Southern China.

Methods: We enrolled adult patients from the Southern Medical University-Shenzhen Stomatology Hospital between 2017 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!