Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated 'regulatory hotspots' around genes closely associated with progenitor programs. To examine their functional significance, we deleted 'hotspot' enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805373 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1007181 | DOI Listing |
J Am Soc Nephrol
November 2024
Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique, CNRS, Sorbonne Université, Roscoff, France.
Int J Mol Sci
November 2024
Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Stop 9037, Grand Forks, ND 58203, USA.
Cisplatin (CisPt) is a widely used chemotherapeutic agent. However, its nephrotoxic effects pose significant risks, particularly for the development of acute kidney injury (AKI) and potential progression to chronic kidney disease (CKD). The present study investigates the impact of non-lethal exposure of CisPt to immortalized human renal epithelial precursor TERT cells (HRTPT cells) that co-express PROM1 and CD24, markers characteristic of renal progenitor cells.
View Article and Find Full Text PDFJ Am Soc Nephrol
December 2024
Department of Stem Cell and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Background: Structure and function in the mammalian kidney are organized along a radial axis highlighted by the corticomedullary organization and regional patterning of the collecting system. The arborised collecting epithelium arises through controlled growth, branching and commitment of Wnt11+ ureteric progenitor cells within cortically localized branch tips until postnatal day 3.
Methods: We applied in situ hybridization and immunofluorescence to key markers of collecting duct cell types to examine their distribution in the embryonic and postnatal mouse kidneys.
Am J Physiol Renal Physiol
January 2025
Division of Pediatric Nephrology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States.
Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Forkhead box D1-positive (Foxd1) stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development.
View Article and Find Full Text PDFPhytomedicine
December 2024
School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu Province, China. Electronic address:
Background: Podocytes have limited proliferative capacity, which leads to irreversible glomerular injury in diverse kidney diseases. Magnesium isoglycyrrhizinate (MgIG), a hepatoprotective agent in clinic, has been reported to improve glomerular podocyte injury. However, the underlying mechanism of MgIG in ameliorating podocyte injury remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!