Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To develop low-cost adsorbents for aqueous nitrate, biochars were prepared from three types of agricultural residuals at different pyrolysis temperatures (300 °C, 450 °C, and 600 °C). The corncob biochar produced at 600 °C (CC600) was the best nitrate adsorbent of all the tested biochars. Characterization results showed that CC600 had good thermal stability, porous structure, and abundant surface functional groups. Findings from batch adsorption experiments demonstrated that CC600 showed relatively fast adsorption kinetics to nitrate in aqueous solutions. In addition, the Langmuir adsorption capacity of CC600 to nitrate was 14.46 mg/g, comparable to that of other biochar-based adsorbents. Therefore, CC600 showed promising potential to be used as a low-cost adsorbent for the treatment of nitrate in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2017.568 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!