Evaluation of the bioavailable fractions of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) is extremely important for assessing their risk to the environment. This available fraction, which can be solubilised and/or easily extracted, is believed to be the most accessible for bioaccumulation, biosorption and/or transformation. Sediment organic matter (OM) and clay play an important role in the biodegradation and bioavailability of PAHs. The strong association of PAHs with OM and clay in sediments has a great influence not only on their distribution but also on their long-term environmental impact. This paper investigates correlations between bioavailability and the clay and OM contents in sediments. The results show that OM is a better sorbent for pyrene (chosen as a model PAH) and that increasing the OM content reduces the bioavailable fraction. A mathematical model was used to predict the kinetic desorption, and these results showed that the sediment with the lowest content of OM had an F value of 24%, whereas sediment with 20% OM gave a value of 9%. In the experiments with sediments with different clay contents, no clear dependence between clay and rate constants of the fast desorbing fractions was observed, which can be explained by the numerous possible interactions at the molecular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2017.551 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, 18003, Granada, Spain.
Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
A BCA -coordinated MOF (1) was initially discovered to exhibit electron transfer photochromism. Remarkably, the photogenerated radicals (1P) showed a maximum absorption enhancement peak at 1158 nm, resulting from the synergistic effects of planar π-conjugation induced by -coordination and π-π interactions among [BCA]˙˙ radicals, thereby promoting the NIR-II photothermal effect.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China University of Technology, South China Advanced Institute for Soft Matter Science and Technology, South China Advanced Institute for Soft Matter Science and Technology, 510640, Guangzhou, CHINA.
The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.
View Article and Find Full Text PDFChem Eng J
July 2024
Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea.
Microplastics (MPs) have been detected in various environmental matrices, drinking water, and food, and their presence is an ecological and human health concern. Most research on MPs has focused solely on their detection and analysis. However, sample pretreatment methods are critical for accurate MP analysis and must be properly established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!