This paper presents the design and implementation of a read-out chain for electrical impedance tomography (EIT) imaging. The EIT imaging approach can be incorporated to take spectral images of the tissue under study, offering an affordable, portable device for home health monitoring. A fast read-out channel covering a wide range of frequencies is a must for such applications. The proposed read-out channel comprising a programmable gain instrumentation amplifier, an analog-to-digital converter (ADC), and an ADC driver is designed and fabricated in a 0.18  m CMOS technology. The proposed read-out chain operates over the wide frequency range of 100 Hz to 10 MHz, with an average signal-to-noise ratio of more than 60 dB. The entire read-out channel consumes between 6.9 and 21.8 mW, depending on its frequency of operation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2017.2778288DOI Listing

Publication Analysis

Top Keywords

read-out chain
12
read-out channel
12
chain electrical
8
electrical impedance
8
impedance tomography
8
eit imaging
8
proposed read-out
8
read-out
5
mhz read-out
4
tomography paper
4

Similar Publications

Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.

View Article and Find Full Text PDF

Covalent molecular functionalization allows the physicochemical properties of 2D materials to be precisely tuned and modulated on-demand. Nonetheless, research on the molecular functionalization of 2D monoelemental graphene-like materials─known as Xenes─remains scarce, being mainly restricted to a specific type of solid-state chemical reaction based on the topotactic transformation of bulkier Zintl phases. Herein, a robust and general chemical approach is reported for the direct functionalization of commercially available H-terminated 2D germanene () with thiolated molecules () via Ge-S bond formation.

View Article and Find Full Text PDF

Sample-to-answer centrifugal microfluidic droplet PCR platform for quantitation of viral load.

Lab Chip

October 2024

Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.

Droplet digital polymerase chain reaction (ddPCR) stands out as a highly sensitive diagnostic technique that is gaining traction in infectious disease diagnostics due to its ability to quantitate very low numbers of viral gene copies. By partitioning the sample into thousands of droplets, ddPCR enables precise and absolute quantification without relying on a standard curve. However, current ddPCR systems often exhibit relatively low levels of integration, and the analytical process remains dependent on elaborate workflows for up-front sample preparation.

View Article and Find Full Text PDF

DNA methylation biomarkers have emerged as promising tools for cancer detection. Common methylation patterns across tumor types allow multi-cancer detection. Droplet digital PCR (ddPCR) has gained considerable attention for methylation detection.

View Article and Find Full Text PDF

Urinary tract infection (UTI) is a common and prevalent disease caused by a spectrum of pathogens. Lack of access to rapid, portable, and high-quality diagnostics in resource-limited settings aggravates the improper treatment of UTIs, which is also a major driver of antibiotic misuse worldwide. Here, we describe a custom-made portable colorimetric array (PoCA) for reading out polymerase chain reaction (PCR) amplicons, the rationale of which is to transfer the previously developed dsDNA-based photosensitization colorimetric assay (solution) onto paper discs for detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!